A Remark on the Uniqueness for Backward Parabolic Operators with non-Lipschitz-continuous Coefficients

Author(s):  
Daniele Del Santo
Keyword(s):  
2020 ◽  
Vol 17 (3) ◽  
pp. 414-436
Author(s):  
Evgeny Sevost'yanov ◽  
Serhii Skvortsov ◽  
Oleksandr Dovhopiatyi

As known, the modulus method is one of the most powerful research tools in the theory of mappings. Distortion of modulus has an important role in the study of conformal and quasiconformal mappings, mappings with bounded and finite distortion, mappings with finite length distortion, etc. In particular, an important fact is the lower distortion of the modulus under mappings. Such relations are called inverse Poletsky inequalities and are one of the main objects of our study. The use of these inequalities is fully justified by the fact that the inverse inequality of Poletsky is a direct (upper) inequality for the inverse mappings, if there exist. If the mapping has a bounded distortion, then the corresponding majorant in inverse Poletsky inequality is equal to the product of the maximum multiplicity of the mapping on its dilatation. For more general classes of mappings, a similar majorant is equal to the sum of the values of outer dilatations over all preimages of the fixed point. It the class of quasiconformal mappings there is no significance between the inverse and direct inequalities of Poletsky, since the upper distortion of the modulus implies the corresponding below distortion and vice versa. The situation significantly changes for mappings with unbounded characteristics, for which the corresponding fact does not hold. The most important case investigated in this paper refers to the situation when the mappings have an unbounded dilatation. The article investigates the local and boundary behavior of mappings with branching that satisfy the inverse inequality of Poletsky with some integrable majorant. It is proved that mappings of this type are logarithmically Holder continuous at each inner point of the domain. Note that the Holder continuity is slightly weaker than the classical Holder continuity, which holds for quasiconformal mappings. Simple examples show that mappings of finite distortion are not Lipschitz continuous even under bounded dilatation. Another subject of research of the article is boundary behavior of mappings. In particular, a continuous extension of the mappings with the inverse Poletsky inequality is obtained. In addition, we obtained the conditions under which the families of these mappings are equicontinuous inside and at the boundary of the domain. Several cases are considered: when the preimage of a fixed continuum under mappings is separated from the boundary, and when the mappings satisfy normalization conditions. The text contains a significant number of examples that demonstrate the novelty and content of the results. In particular, examples of mappings with branching that satisfy the inverse Poletsky inequality, have unbounded characteristics, and for which the statements of the basic theorems are satisfied, are given.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1113
Author(s):  
Isaías Alonso-Mallo ◽  
Ana M. Portillo

The initial boundary-value problem associated to a semilinear wave equation with time-dependent boundary values was approximated by using the method of lines. Time integration is achieved by means of an explicit time method obtained from an arbitrarily high-order splitting scheme. We propose a technique to incorporate the boundary values that is more accurate than the one obtained in the standard way, which is clearly seen in the numerical experiments. We prove the consistency and convergence, with the same order of the splitting method, of the full discretization carried out with this technique. Although we performed mathematical analysis under the hypothesis that the source term was Lipschitz-continuous, numerical experiments show that this technique works in more general cases.


Author(s):  
Giovanni Fusco ◽  
Monica Motta

AbstractIn this paper we consider an impulsive extension of an optimal control problem with unbounded controls, subject to endpoint and state constraints. We show that the existence of an extended-sense minimizer that is a normal extremal for a constrained Maximum Principle ensures that there is no gap between the infima of the original problem and of its extension. Furthermore, we translate such relation into verifiable sufficient conditions for normality in the form of constraint and endpoint qualifications. Links between existence of an infimum gap and normality in impulsive control have previously been explored for problems without state constraints. This paper establishes such links in the presence of state constraints and of an additional ordinary control, for locally Lipschitz continuous data.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Heping Wang ◽  
Yanbo Zhang

We discuss the rate of convergence of the Lupasq-analogues of the Bernstein operatorsRn,q(f;x)which were given by Lupas in 1987. We obtain the estimates for the rate of convergence ofRn,q(f)by the modulus of continuity off, and show that the estimates are sharp in the sense of order for Lipschitz continuous functions.


Author(s):  
Panpan Zhang ◽  
Anhui Gu

This paper is devoted to the long-term behavior of nonautonomous random lattice dynamical systems with nonlinear diffusion terms. The nonlinear drift and diffusion terms are not expected to be Lipschitz continuous but satisfy the continuity and growth conditions. We first prove the existence of solutions, and establish the existence of a multi-valued nonautonomous cocycle. We then show the existence and uniqueness of pullback attractors parameterized by sample parameters. Finally, we establish the measurability of this pullback attractor by the method based on the weak upper semicontinuity of the solutions.


2018 ◽  
Vol 24 (4) ◽  
pp. 1429-1451 ◽  
Author(s):  
Paola Mannucci ◽  
Claudio Marchi ◽  
Nicoletta Tchou

We study some classes of singular perturbation problems where the dynamics of the fast variables evolve in the whole space obeying to an infinitesimal operator which is subelliptic and ergodic. We prove that the corresponding ergodic problem admits a solution which is globally Lipschitz continuous and it has at most a logarithmic growth at infinity. The main result of this paper establishes that, as ϵ → 0, the value functions of the singular perturbation problems converge locally uniformly to the solution of an effective problem whose operator and terminal data are explicitly given in terms of the invariant measure for the ergodic operator.


2008 ◽  
Vol 40 (03) ◽  
pp. 651-672 ◽  
Author(s):  
Dominic Schuhmacher ◽  
Aihua Xia

Most metrics between finite point measures currently used in the literature have the flaw that they do not treat differing total masses in an adequate manner for applications. This paper introduces a new metric d̅ 1 that combines positional differences of points under a closest match with the relative difference in total mass in a way that fixes this flaw. A comprehensive collection of theoretical results about d̅ 1 and its induced Wasserstein metric d̅ 2 for point process distributions are given, including examples of useful d̅ 1-Lipschitz continuous functions, d̅ 2 upper bounds for the Poisson process approximation, and d̅ 2 upper and lower bounds between distributions of point processes of independent and identically distributed points. Furthermore, we present a statistical test for multiple point pattern data that demonstrates the potential of d̅ 1 in applications.


2018 ◽  
Vol 149 (2) ◽  
pp. 533-560
Author(s):  
Patricio Felmer ◽  
Erwin Topp

In this paper, we study the fractional Dirichlet problem with the homogeneous exterior data posed on a bounded domain with Lipschitz continuous boundary. Under an extra assumption on the domain, slightly weaker than the exterior ball condition, we are able to prove existence and uniqueness of solutions which are Hölder continuous on the boundary. In proving this result, we use appropriate barrier functions obtained by an approximation procedure based on a suitable family of zero-th order problems. This procedure, in turn, allows us to obtain an approximation scheme for the Dirichlet problem through an equicontinuous family of solutions of the approximating zero-th order problems on ${\bar \Omega}$. Both results are extended to an ample class of fully non-linear operators.


Sign in / Sign up

Export Citation Format

Share Document