1970 ◽  
Vol 38 ◽  
pp. 1-12 ◽  
Author(s):  
Eiichi Sakai

In the theory of functions of several complex variables, the problem about the continuation of meromorphic functions has not been much investigated for a long time in spite of its importance except the deeper result of the continuity theorem due to E. E. Levi [4] and H. Kneser [3], The difficulty of its investigation is based on the following reasons: we can not use the tools of not only Cauchy’s integral formula but also the power series and there are indetermination points for the meromorphic function of many variables different from one variable. Therefore we shall also follow the Levi and Kneser’s method and seek for the aspect of meromorphic completion of a Reinhardt domain in Cn.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Mauro Parise

An analytical method is presented which makes it possible to derive exact explicit expressions for the time-harmonic surface fields excited by a small circular loop antenna placed on the top surface of plane layered earth. The developed procedure leads to casting the complete integral representations for the EM field components into forms suitable for application of Cauchy’s integral formula. As a result, the surface fields are expressed as sums of Hankel functions. Numerical simulations are performed to show the validity and accuracy of the proposed solution.


Author(s):  
Ravi P. Agarwal ◽  
Kanishka Perera ◽  
Sandra Pinelas

2021 ◽  
Vol 28 (2) ◽  
pp. 163-182
Author(s):  
José L. Simancas-García ◽  
Kemel George-González

Shannon’s sampling theorem is one of the most important results of modern signal theory. It describes the reconstruction of any band-limited signal from a finite number of its samples. On the other hand, although less well known, there is the discrete sampling theorem, proved by Cooley while he was working on the development of an algorithm to speed up the calculations of the discrete Fourier transform. Cooley showed that a sampled signal can be resampled by selecting a smaller number of samples, which reduces computational cost. Then it is possible to reconstruct the original sampled signal using a reverse process. In principle, the two theorems are not related. However, in this paper we will show that in the context of Non Standard Mathematical Analysis (NSA) and Hyperreal Numerical System R, the two theorems are equivalent. The difference between them becomes a matter of scale. With the scale changes that the hyperreal number system allows, the discrete variables and functions become continuous, and Shannon’s sampling theorem emerges from the discrete sampling theorem.


Author(s):  
John Ryan

AbstractIntegrals related to Cauchy's integral formula and Huygens' principle are used to establish a link between domains of holomorphy in n complex variables and cells of harmonicity in one higher dimension. These integrals enable us to determine domains to which analytic functions on real analytic surface in Rn+1 may be extended to solutions to a Dirac equation.


Sign in / Sign up

Export Citation Format

Share Document