Gene Conservation and the Preservation of Adaptability

Author(s):  
H-R. Gregorius
Keyword(s):  
2010 ◽  
Vol 189 (2) ◽  
pp. 629-642 ◽  
Author(s):  
Olivier Garsmeur ◽  
Carine Charron ◽  
Stéphanie Bocs ◽  
Vincent Jouffe ◽  
Sylvie Samain ◽  
...  

2007 ◽  
Vol 83 (5) ◽  
pp. 719-722
Author(s):  
J D Simpson ◽  
B S.P. Wang

The National Tree Seed Centre has been providing seed of known origin and quality for research for 40 years. Seed is also stored for long-term gene conservation purposes to provide a source of germplasm for future research and restoration. This is particularly important for species facing such threats as insect attack, disease, climate change, or conversion of forest land to non-forest uses. The Centre's inventory focuses on native tree and shrub species, striving to store samples from throughout their ranges. Over 26 000 seed samples have been sent to researchers in 65 countries, 70% of these samples being distributed within Canada. Seed research has always been a component of the Seed Centre's program. One notable accomplishment is the development of the Petawawa Germination Box. The Seed Centre participates in and contributes to activities of the Association of Official Seed Analysts, the International Seed Testing Association, and the IUFRO Seed Physiology and Technology Research Group. Key words: collection, dormancy, ex situ gene conservation, germination, research, seed, storage


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0253250
Author(s):  
Daniel Rud ◽  
Paul Marjoram ◽  
Kimberly Siegmund ◽  
Darryl Shibata

Recent DepMap CRISPR-Cas9 single gene disruptions have identified genes more essential to proliferation in tissue culture. It would be valuable to translate these finding with measurements more practical for human tissues. Here we show that DepMap essential genes and other literature curated functional genes exhibit cell-specific preferential epigenetic conservation when DNA methylation measurements are compared between replicate cell lines and between intestinal crypts from the same individual. Culture experiments indicate that epigenetic drift accumulates through time with smaller differences in more functional genes. In NCI-60 cell lines, greater targeted gene conservation correlated with greater drug sensitivity. These studies indicate that two measurements separated in time allow normal or neoplastic cells to signal through conservation which human genes are more essential to their survival in vitro or in vivo.


Nature ◽  
1986 ◽  
Vol 319 (6055) ◽  
pp. 615-615 ◽  
Author(s):  
M.H. ARNOLD ◽  
D. ASTLEY ◽  
E.A. BELL ◽  
J.K.A. BLEASDALE ◽  
A.H. BUNTING ◽  
...  
Keyword(s):  

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Sidney B. Cambridge

Abstract Background Little is known why proteins and RNAs exhibit half-lives varying over several magnitudes. Despite many efforts, a conclusive link between half-lives and gene function could not be established suggesting that other determinants may influence these molecular attributes. Results Here, I find that with increasing gene age there is a gradual and significant increase of protein and RNA half-lives, protein structure, and other molecular attributes that tend to affect protein abundance. These observations are accommodated in a hypothesis which posits that new genes at ‘birth’ are not optimized and thus their products exhibit low half-lives and less structure but continuous mutagenesis eventually improves these attributes. Thus, the protein and RNA products of the oldest genes obtained their high degrees of stability and structure only after billions of years while the products of younger genes had less time to be optimized and are therefore less stable and structured. Because more stable proteins with lower turnover require less transcription to maintain the same level of abundance, reduced transcription-associated mutagenesis (TAM) would fixate the changes by increasing gene conservation. Conclusions Consequently, the currently observed diversity of molecular attributes is a snapshot of gene products being at different stages along their temporal path of optimization.


Sign in / Sign up

Export Citation Format

Share Document