Homogenization in a Perforated Domain Including a Thin Full Interlayer

1993 ◽  
pp. 25-36
Author(s):  
Alain Bourgeat ◽  
Roland Tapiéro
Keyword(s):  
2013 ◽  
Vol 143 (6) ◽  
pp. 1255-1289 ◽  
Author(s):  
Andrii Khrabustovskyi

The paper deals with the asymptotic behaviour as ε → 0 of the spectrum of the Laplace–Beltrami operator Δε on the Riemannian manifold Mε (dim Mε = N ≥ 2) depending on a small parameter ε > 0. Mε consists of two perforated domains, which are connected by an array of tubes of length qε. Each perforated domain is obtained by removing from the fixed domain Ω ⊂ ℝN the system of ε-periodically distributed balls of radius dε = ō(ε). We obtain a variety of homogenized spectral problems in Ω; their type depends on some relations between ε, dε and qε. In particular, if the limitsare positive, then the homogenized spectral problem contains the spectral parameter in a nonlinear manner, and its spectrum has a sequence of accumulation points.


2009 ◽  
Vol 19 (11) ◽  
pp. 2065-2100 ◽  
Author(s):  
MATTEO FOCARDI ◽  
M. S. GELLI ◽  
M. PONSIGLIONE

This paper deals with fracture mechanics in periodically perforated domains. Our aim is to provide a variational model for brittle porous media in the case of anti-planar elasticity. Given the perforated domain Ωε ⊂ ℝN (ε being an internal scale representing the size of the periodically distributed perforations), we will consider a total energy of the type [Formula: see text] Here u is in SBV(Ωε) (the space of special functions of bounded variation), Su is the set of discontinuities of u, which is identified with a macroscopic crack in the porous medium Ωε, and [Formula: see text] stands for the (N - 1)-Hausdorff measure of the crack Su. We study the asymptotic behavior of the functionals [Formula: see text] in terms of Γ-convergence as ε → 0. As a first (nontrivial) step we show that the domain of any limit functional is SBV(Ω) despite the degeneracies introduced by the perforations. Then we provide explicit formula for the bulk and surface energy densities of the Γ-limit, representing in our model the effective elastic and brittle properties of the porous medium, respectively.


Author(s):  
Matteo Dalla Riva ◽  
Riccardo Molinarolo ◽  
Paolo Musolino

In this paper we study the existence and the analytic dependence upon domain perturbation of the solutions of a nonlinear nonautonomous transmission problem for the Laplace equation. The problem is defined in a pair of sets consisting of a perforated domain and an inclusion whose shape is determined by a suitable diffeomorphism $\phi$ . First we analyse the case in which the inclusion is a fixed domain. Then we will perturb the inclusion and study the arising boundary value problem and the dependence of a specific family of solutions upon the perturbation parameter $\phi$ .


2010 ◽  
Author(s):  
Feng Yongping ◽  
Yao Zhengan ◽  
Deng Mingxiang ◽  
Jane W. Z. Lu ◽  
Andrew Y. T. Leung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document