Generation of High-Order Polynomial Patches from Scattered Data

Author(s):  
Karsten Bock ◽  
Jörg Stiller
Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 187
Author(s):  
Marcelo A. Soto ◽  
Alin Jderu ◽  
Dorel Dorobantu ◽  
Marius Enachescu ◽  
Dominik Ziegler

A high-order polynomial fitting method is proposed to accelerate the computation of double-Gaussian fitting in the retrieval of the Brillouin frequency shifts (BFS) in optical fibers showing two local Brillouin peaks. The method is experimentally validated in a distributed Brillouin sensor under different signal-to noise ratios and realistic spectral scenarios. Results verify that a sixth-order polynomial fitting can provide a reliable initial estimation of the dual local BFS values, which can be subsequently used as initial parameters of a nonlinear double-Gaussian fitting. The method demonstrates a 4.9-fold reduction in the number of iterations required by double-Gaussian fitting and a 3.4-fold improvement in processing time.


2011 ◽  
Vol 308-310 ◽  
pp. 2560-2564 ◽  
Author(s):  
Xiang Rong Yuan

A moving fitting method for edge detection is proposed in this work. Polynomial function is used for the curve fitting of the column of pixels near the edge. Proposed method is compared with polynomial fitting method without sub-segment. The comparison shows that even with low order polynomial, the effects of moving fitting are significantly better than that with high order polynomial fitting without sub-segment.


2016 ◽  
Vol 40 (7-8) ◽  
pp. 4681-4699 ◽  
Author(s):  
Jinglai Wu ◽  
Zhen Luo ◽  
Jing Zheng ◽  
Chao Jiang

Author(s):  
Guo Chao ◽  
Liu Yu ◽  
He Hangxing ◽  
Liu Luguo ◽  
Wang Xiaoyu ◽  
...  

To solve three-dimensional kinetics problems, a high order nodal expansion method for hexagonal-z geometry (HONEM) and a Runge-Kutta (RK) method are respectively adopted to deal with the spatial and temporal problem. In the HONEM, 1D partially-integrated flux are approximated by using four order polynomial. The two order polynomial is adopted to the approximation of partially-integrated leakages. The Runge-Kutta method is adopted as a tool for dispersing the time term of 3D kinetics equation. A flux weighting method (FWM) is used for obtaining homogenized cross sections of mix node. The three-dimensional hexagonal kinetics code has been developed based on this method and tested with two benchmark problems of VVER which are the control rod ejection without any feedback and with simple adiabatic Doppler feedback. The results calculated by this code agree well with the reference results and the code is validated.


Sign in / Sign up

Export Citation Format

Share Document