peak finding
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
Vol 924 (2) ◽  
pp. 94
Author(s):  
James J. Buchanan ◽  
Michael D. Schneider ◽  
Robert E. Armstrong ◽  
Amanda L. Muyskens ◽  
Benjamin W. Priest ◽  
...  

Abstract A significant fraction of observed galaxies in the Rubin Observatory Legacy Survey of Space and Time (LSST) will overlap at least one other galaxy along the same line of sight, in a so-called “blend.” The current standard method of assessing blend likelihood in LSST images relies on counting up the number of intensity peaks in the smoothed image of a blend candidate, but the reliability of this procedure has not yet been comprehensively studied. Here we construct a realistic distribution of blended and unblended galaxies through high-fidelity simulations of LSST-like images, and from this we examine the blend classification accuracy of the standard peak-finding method. Furthermore, we develop a novel Gaussian process blend classifier model, and show that this classifier is competitive with both the peak finding method as well as with a convolutional neural network model. Finally, whereas the peak-finding method does not naturally assign probabilities to its classification estimates, the Gaussian process model does, and we show that the Gaussian process classification probabilities are generally reliable.


Author(s):  
Moritz S Fischer ◽  
Marcus Brüggen ◽  
Kai Schmidt-Hoberg ◽  
Klaus Dolag ◽  
Antonio Ragagnin ◽  
...  

Abstract Dark matter self-interactions have been proposed to solve problems on small length scales within the standard cold dark matter cosmology. Here we investigate the effects of dark matter self-interactions in merging systems of galaxies and galaxy clusters with equal and unequal mass ratios. We perform N-body dark matter-only simulations of idealised setups to study the effects of dark matter self-interactions that are elastic and velocity-independent. We go beyond the commonly adopted assumption of large-angle (rare) dark matter scatterings, paying attention to the impact of small-angle (frequent) scatterings on astrophysical observables and related quantities. Specifically, we focus on dark matter-galaxy offsets, galaxy-galaxy distances, halo shapes, morphology and the phase-space distribution. Moreover, we compare two methods to identify peaks: one based on the gravitational potential and one based on isodensity contours. We find that the results are sensitive to the peak finding method, which poses a challenge for the analysis of merging systems in simulations and observations, especially for minor mergers. Large dark matter-galaxy offsets can occur in minor mergers, especially with frequent self-interactions. The subhalo tends to dissolve quickly for these cases. While clusters in late merger phases lead to potentially large differences between rare and frequent scatterings, we believe that these differences are non-trivial to extract from observations. We therefore study the galaxy/star populations which remain distinct even after the dark matter haloes have coalesced. We find that these collisionless tracers behave differently for rare and frequent scatterings, potentially giving a handle to learn about the micro-physics of dark matter.


2021 ◽  
Vol 54 (5) ◽  
Author(s):  
Marjan Hadian-Jazi ◽  
Alireza Sadri ◽  
Anton Barty ◽  
Oleksandr Yefanov ◽  
Marina Galchenkova ◽  
...  

A peak-finding algorithm for serial crystallography (SX) data analysis based on the principle of `robust statistics' has been developed. Methods which are statistically robust are generally more insensitive to any departures from model assumptions and are particularly effective when analysing mixtures of probability distributions. For example, these methods enable the discretization of data into a group comprising inliers (i.e. the background noise) and another group comprising outliers (i.e. Bragg peaks). Our robust statistics algorithm has two key advantages, which are demonstrated through testing using multiple SX data sets. First, it is relatively insensitive to the exact value of the input parameters and hence requires minimal optimization. This is critical for the algorithm to be able to run unsupervised, allowing for automated selection or `vetoing' of SX diffraction data. Secondly, the processing of individual diffraction patterns can be easily parallelized. This means that it can analyse data from multiple detector modules simultaneously, making it ideally suited to real-time data processing. These characteristics mean that the robust peak finder (RPF) algorithm will be particularly beneficial for the new class of MHz X-ray free-electron laser sources, which generate large amounts of data in a short period of time.


2021 ◽  
Author(s):  
Frank J Fazekas ◽  
Thomas R Shaw ◽  
Sumin Kim ◽  
Ryan A Bogucki ◽  
Sarah L Veatch

Single molecule localization microscopy (SMLM) techniques transcend the diffraction limit of visible light by localizing isolated emitters sampled stochastically. This time-lapse imaging necessitates long acquisition times, over which sample drift can become large relative to the localization precision. Here we present a novel, efficient, and robust method for estimating drift using a simple peak-finding algorithm based on mean shifts that is effective for SMLM in 2 or 3 dimensions.


2021 ◽  
Author(s):  
Sergio Mena ◽  
Solene Dietsch ◽  
Shane N. Berger ◽  
Colby E. Witt ◽  
Parastoo Hashemi

Fast-scan cyclic voltammetry at carbon fiber microelectrodes measures low concentrations of analytes in biological systems. There are ongoing efforts to simplify FSCV analysis and several custom platforms are available for filtering and multi-modal analysis of FSCV signals but there is no single, easily accessible platform that has capacity for all these features. Here we present The Analysis Kid: a free, open-source cloud application that does not require a specialized runtime environment and is easily accessible via common browsers. We show that a user-friendly interface can analyze multi-platform file formats to provide multimodal visualization of FSCV color plots with digital background subtraction. We highlight key features that allow interactive calibration and parametric analysis via peak finding algorithms to automatically detect the maximum amplitude, area under the curve and clearance rate of the signal. Finally, The Analysis Kid enables semi-automatic fitting of data with Michaelis Menten kinetics with single or dual reuptake models. The Analysis Kid can be freely accessed at https://analysis-kid.herokuapp.com/. The web application code is found, under an MIT license, at https://github.com/sermeor/The-Analysis-Kid.


2021 ◽  
Vol 179 ◽  
pp. 260-267
Author(s):  
Norezmi Jamal ◽  
Nabilah Ibrahim ◽  
MNAH Sha’abani ◽  
Farhanahani Mahmud ◽  
N. Fuad

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 187
Author(s):  
Marcelo A. Soto ◽  
Alin Jderu ◽  
Dorel Dorobantu ◽  
Marius Enachescu ◽  
Dominik Ziegler

A high-order polynomial fitting method is proposed to accelerate the computation of double-Gaussian fitting in the retrieval of the Brillouin frequency shifts (BFS) in optical fibers showing two local Brillouin peaks. The method is experimentally validated in a distributed Brillouin sensor under different signal-to noise ratios and realistic spectral scenarios. Results verify that a sixth-order polynomial fitting can provide a reliable initial estimation of the dual local BFS values, which can be subsequently used as initial parameters of a nonlinear double-Gaussian fitting. The method demonstrates a 4.9-fold reduction in the number of iterations required by double-Gaussian fitting and a 3.4-fold improvement in processing time.


2020 ◽  
Vol 1690 ◽  
pp. 012068
Author(s):  
V Shumikhin ◽  
E Atkin ◽  
D Azarov ◽  
D Normanov ◽  
P Ivanov ◽  
...  

2020 ◽  
Vol 29 (3) ◽  
pp. 03LT02
Author(s):  
Yuan Li ◽  
Siebe Dijcks ◽  
Guangyu Sun ◽  
Jiaye Wen ◽  
Yaoyu Xu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document