Gaze Shifts and Pen Velocity Minima During Line Copying with Consideration to Signature Simulation

Author(s):  
Avni Pepe ◽  
Jodi Sita
Keyword(s):  
2008 ◽  
Vol 100 (4) ◽  
pp. 1848-1867 ◽  
Author(s):  
Sigrid M. C. I. van Wetter ◽  
A. John van Opstal

Such perisaccadic mislocalization is maximal in the direction of the saccade and varies systematically with the target-saccade onset delay. We have recently shown that under head-fixed conditions perisaccadic errors do not follow the quantitative predictions of current visuomotor models that explain these mislocalizations in terms of spatial updating. These models all assume sluggish eye-movement feedback and therefore predict that errors should vary systematically with the amplitude and kinematics of the intervening saccade. Instead, we reported that errors depend only weakly on the saccade amplitude. An alternative explanation for the data is that around the saccade the perceived target location undergoes a uniform transient shift in the saccade direction, but that the oculomotor feedback is, on average, accurate. This “ visual shift” hypothesis predicts that errors will also remain insensitive to kinematic variability within much larger head-free gaze shifts. Here we test this prediction by presenting a brief visual probe near the onset of gaze saccades between 40 and 70° amplitude. According to models with inaccurate gaze-motor feedback, the expected perisaccadic errors for such gaze shifts should be as large as 30° and depend heavily on the kinematics of the gaze shift. In contrast, we found that the actual peak errors were similar to those reported for much smaller saccadic eye movements, i.e., on average about 10°, and that neither gaze-shift amplitude nor kinematics plays a systematic role. Our data further corroborate the visual origin of perisaccadic mislocalization under open-loop conditions and strengthen the idea that efferent feedback signals in the gaze-control system are fast and accurate.


2021 ◽  
Vol 79 ◽  
pp. 102853
Author(s):  
Cédrick T. Bonnet ◽  
Déborah Dubrulle ◽  
José A. Barela ◽  
Luc Defebvre ◽  
Arnaud Delval
Keyword(s):  

2007 ◽  
Vol 97 (2) ◽  
pp. 1149-1162 ◽  
Author(s):  
Mario Prsa ◽  
Henrietta L. Galiana

Models of combined eye-head gaze shifts all aim to realistically simulate behaviorally observed movement dynamics. One of the most problematic features of such models is their inability to determine when a saccadic gaze shift should be initiated and when it should be ended. This is commonly referred to as the switching mechanism mediated by omni-directional pause neurons (OPNs) in the brain stem. Proposed switching strategies implemented in existing gaze control models all rely on a sensory error between instantaneous gaze position and the spatial target. Accordingly, gaze saccades are initiated after presentation of an eccentric visual target and subsequently terminated when an internal estimate of gaze position becomes nearly equal to that of the target. Based on behavioral observations, we demonstrate that such a switching mechanism is insufficient and is unable to explain certain types of movements. We propose an improved hypothesis for how the OPNs control gaze shifts based on a visual-vestibular interaction of signals known to be carried on anatomical projections to the OPN area. The approach is justified by the analysis of recorded gaze shifts interrupted by a head brake in animal subjects and is demonstrated by implementing the switching mechanism in an anatomically based gaze control model. Simulated performance reveals that a weighted sum of three signals: gaze motor error, head velocity, and eye velocity, hypothesized as inputs to OPNs, successfully reproduces diverse behaviorally observed eye-head movements that no other existing model can account for.


1995 ◽  
Vol 73 (4) ◽  
pp. 1632-1652 ◽  
Author(s):  
J. O. Phillips ◽  
L. Ling ◽  
A. F. Fuchs ◽  
C. Siebold ◽  
J. J. Plorde

1. We studied horizontal eye and head movements in three monkeys that were trained to direct their gaze (eye position in space) toward jumping targets while their heads were both fixed and free to rotate about a vertical axis. We considered all gaze movements that traveled > or = 80% of the distance to the new visual target. 2. The relative contributions and metrics of eye and head movements to the gaze shift varied considerably from animal to animal and even within animals. Head movements could be initiated early or late and could be large or small. The eye movements of some monkeys showed a consistent decrease in velocity as the head accelerated, whereas others did not. Although all gaze shifts were hypometric, they were more hypometric in some monkeys than in others. Nevertheless, certain features of the gaze shift were identifiable in all monkeys. To identify those we analyzed gaze, eye in head position, and head position, and their velocities at three points in time during the gaze shift: 1) when the eye had completed its initial rotation toward the target, 2) when the initial gaze shift had landed, and 3) when the head movement was finished. 3. For small gaze shifts (< 20 degrees) the initial gaze movement consisted entirely of an eye movement because the head did not move. As gaze shifts became larger, the eye movement contribution saturated at approximately 30 degrees and the head movement contributed increasingly to the initial gaze movement. For the largest gaze shifts, the eye usually began counterrolling or remained stable in the orbit before gaze landed. During the interval between eye and gaze end, the head alone carried gaze to completion. Finally, when the head movement landed, it was almost aimed at the target and the eye had returned to within 10 +/- 7 degrees, mean +/- SD, of straight ahead. Between the end of the gaze shift and the end of the head movement, gaze remained stable in space or a small correction saccade occurred. 4. Gaze movements < 20 degrees landed accurately on target whether the head was fixed or free. For larger target movements, both head-free and head-fixed gaze shifts became increasingly hypometric. Head-free gaze shifts were more accurate, on average, but also more variable. This suggests that gaze is controlled in a different way with the head free. For target amplitudes < 60 degrees, head position was hypometric but the error was rather constant at approximately 10 degrees.(ABSTRACT TRUNCATED AT 400 WORDS)


2009 ◽  
Vol 102 (1) ◽  
pp. 513-522 ◽  
Author(s):  
Anand C. Joshi ◽  
Matthew J. Thurtell ◽  
Mark F. Walker ◽  
Alessandro Serra ◽  
R. John Leigh

The human ocular following response (OFR) is a preattentive, short-latency visual-field–holding mechanism, which is enhanced if the moving stimulus is applied in the wake of a saccade. Since most natural gaze shifts incorporate both saccadic and vergence components, we asked whether the OFR was also enhanced during vergence. Ten subjects viewed vertically moving sine-wave gratings on a video monitor at 45 cm that had a temporal frequency of 16.7 Hz, contrast of 32%, and spatial frequency of 0.17, 0.27, or 0.44 cycle/deg. In Fixation/OFR experiments, subjects fixed on a white central dot on the video monitor, which disappeared at the beginning of each trial, just as the sinusoidal grating started moving up or down. We measured the change in eye position in the 70- to 150-ms open-loop interval following stimulus onset. Group mean downward responses were larger (0.14°) and made at shorter latency (85 ms) than upward responses (0.10° and 96 ms). The direction of eye drifts during control trials, when gratings remained stationary, was unrelated to the prior response. During vergence/OFR experiments, subjects switched their fixation point between the white dot at 45 cm and a red spot at 15 cm, cued by the disappearance of one target and appearance of the other. When horizontal vergence velocity exceeded 15°/s, motion of sinusoidal gratings commenced and elicited the vertical OFR. Subjects showed significantly ( P < 0.001) larger OFR when the moving stimulus was presented during convergence (group mean increase of 46%) or divergence (group mean increase of 36%) compared with following fixation. Since gaze shifts between near and far are common during natural activities, we postulate that the increase of OFR during vergence movements reflects enhancement of early cortical motion processing, which serves to stabilize the visual field as the eyes approach their new fixation point.


2005 ◽  
Vol 93 (3) ◽  
pp. 1223-1234 ◽  
Author(s):  
Daniel J. Tollin ◽  
Luis C. Populin ◽  
Jordan M. Moore ◽  
Janet L. Ruhland ◽  
Tom C. T. Yin

In oculomotor research, there are two common methods by which the apparent location of visual and/or auditory targets are measured, saccadic eye movements with the head restrained and gaze shifts (combined saccades and head movements) with the head unrestrained. Because cats have a small oculomotor range (approximately ±25°), head movements are necessary when orienting to targets at the extremes of or outside this range. Here we tested the hypothesis that the accuracy of localizing auditory and visual targets using more ethologically natural head-unrestrained gaze shifts would be superior to head-restrained eye saccades. The effect of stimulus duration on localization accuracy was also investigated. Three cats were trained using operant conditioning with their heads initially restrained to indicate the location of auditory and visual targets via eye position. Long-duration visual targets were localized accurately with little error, but the locations of short-duration visual and both long- and short-duration auditory targets were markedly underestimated. With the head unrestrained, localization accuracy improved substantially for all stimuli and all durations. While the improvement for long-duration stimuli with the head unrestrained might be expected given that dynamic sensory cues were available during the gaze shifts and the lack of a memory component, surprisingly, the improvement was greatest for the auditory and visual stimuli with the shortest durations, where the stimuli were extinguished prior to the onset of the eye or head movement. The underestimation of auditory targets with the head restrained is explained in terms of the unnatural sensorimotor conditions that likely result during head restraint.


1999 ◽  
Vol 129 (4) ◽  
pp. 0500-0510 ◽  
Author(s):  
S. Ramat ◽  
V. E. Das ◽  
J. T. Somers ◽  
R. J. Leigh
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document