Threshold Photoelectron Spectra of Four Fluorinated Ethenes from the Ground Electronic State to Higher Electronic States

Author(s):  
Jonelle Harvey
2002 ◽  
Vol 09 (01) ◽  
pp. 153-158 ◽  
Author(s):  
WEIDONG ZHOU ◽  
D. P. SECCOMBE ◽  
R. Y. L. CHIM ◽  
R. P. TUCKETT

Threshold photoelectron–photoion coincidence (TPEPICO) spectroscopy has been used to investigate the decay dynamics of the valence electronic states of the parent cation of several hydrofluorocarbons (HFC), based on fluorine-substituted ethane, in the energy range 11–25 eV. We present data for CF 3– CHF 2, CF 3– CH 2 F , CF 3– CH 3 and CHF 2– CH 3. The threshold photoelectron spectra (TPES) of these molecules show a common feature of a broad, relatively weak ground state, associated with electron removal from the highest-occupied molecular orbital (HOMO) having mainly C–C σ-bonding character. Adiabatic and vertical ionisation energies for the HOMO of the four HFCs are presented, together with corresponding values from ab initio calculations. For those lower-energy molecular orbitals associated with non-bonding fluorine 2pπ lone pair electrons, these electronic states of the HFC cation decay impulsively by C–F bond fission with considerable release of translational kinetic energy. Appearance energies are presented for formation of the daughter cation formed by such a process (e.g. CF 3– CHF +), together with ab initio energies of the corresponding dissociation channel (e.g. CF 3– CHF + + F ). Values for the translational kinetic energy released are compared with the predictions of a pure-impulsive model.


1973 ◽  
Vol 51 (15) ◽  
pp. 2423-2432 ◽  
Author(s):  
Saul Wolfe ◽  
Luis M. Tel ◽  
I. G. Csizmadia

Non-empirical double zeta quality molecular orbital calculations on −CH2OH as a function of the C—O bond length (r), the rotational angle about the C—O bond (θ), and the pyramidal angle at carbon [Formula: see text] are described. From the stretching potential curve, E(r), it is shown that dissociation of −CH2OH proceeds to give CH2 and OH−. The rotation–inversion surface, [Formula: see text], has two types of minima; in both cases the most favorable pyramidal angle at carbon is 105°. The lower minimum corresponds to a structure (the Y conformation) having the hydroxyl proton on the external bisector of the HCH angle. The higher minimum is 6.67 kcal/mol less stable and corresponds to a structure (the W conformation) having the hydroxyl proton on the internal bisector of the HCH angle. The relationship of these results to the gauche effect is discussed and it is noted that at certain internuclear distances the nuclear–nuclear repulsion term (Enucl) may overcome the tendency of adjacent electron pairs and polar bonds to exist preferentially in that conformation which has the maximum number of gauche interactions between these electron pairs or polar bonds.The topomerization of −CH2OH, i.e., the conformational transformation from one Y conformation into another, proceeds, via the W conformation as an intermediate, by two separate events, viz. rotation about the C—O bond, having a barrier of 10.58 kcal/mol, and pyramidal inversion at carbon, with a barrier of 20.52 kcal/mol. Some factors governing the relative importance of rotation and inversion in degenerate racemization are discussed.In its ground electronic state CH3O− is 22.18 kcal/mol more stable than −CH2OH. However, in the low-lying excited states all conformations of −CH2OH are stabilized relative to CH3O−. The most stable excited state structure of −CH2OH corresponds to the energy maximum for rotation–inversion of the ground electronic state.


2015 ◽  
Vol 17 (44) ◽  
pp. 29518-29530 ◽  
Author(s):  
Matthieu Sala ◽  
Stéphane Guérin ◽  
Fabien Gatti

We propose a new mechanism for the radiationless decay of photoexcited pyrazine to its ground electronic state involving a conical intersection between the dark Au(nπ) state and the ground state.


Sign in / Sign up

Export Citation Format

Share Document