Maximization of the Survival Probability by Franchise and Deductible Amounts in the Classical Risk Model

Author(s):  
Olena Ragulina
Risks ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 85 ◽  
Author(s):  
Mohamed Lkabous ◽  
Jean-François Renaud

In this short paper, we study a VaR-type risk measure introduced by Guérin and Renaud and which is based on cumulative Parisian ruin. We derive some properties of this risk measure and we compare it to the risk measures of Trufin et al. and Loisel and Trufin.


2012 ◽  
Vol 51 (2) ◽  
pp. 370-378 ◽  
Author(s):  
David Landriault ◽  
Christiane Lemieux ◽  
Gordon E. Willmot

2014 ◽  
Vol 44 (3) ◽  
pp. 635-651 ◽  
Author(s):  
Chuancun Yin ◽  
Yuzhen Wen ◽  
Yongxia Zhao

AbstractIn this paper we study the optimal dividend problem for a company whose surplus process evolves as a spectrally positive Lévy process before dividends are deducted. This model includes the dual model of the classical risk model and the dual model with diffusion as special cases. We assume that dividends are paid to the shareholders according to an admissible strategy whose dividend rate is bounded by a constant. The objective is to find a dividend policy so as to maximize the expected discounted value of dividends which are paid to the shareholders until the company is ruined. We show that the optimal dividend strategy is formed by a threshold strategy.


1991 ◽  
Vol 21 (2) ◽  
pp. 199-221 ◽  
Author(s):  
David C. M. Dickson ◽  
Howard R. Waters

AbstractIn this paper we present an algorithm for the approximate calculation of finite time survival probabilities for the classical risk model. We also show how this algorithm can be applied to the calculation of infinite time survival probabilities. Numerical examples are given and the stability of the algorithms is discussed.


2020 ◽  
Vol 13 (12) ◽  
pp. 298
Author(s):  
Yuan Gao ◽  
Lingju Chen ◽  
Jiancheng Jiang ◽  
Honglong You

In this paper we study estimating ruin probability which is an important problem in insurance. Our work is developed upon the existing nonparametric estimation method for the ruin probability in the classical risk model, which employs the Fourier transform but requires smoothing on the density of the sizes of claims. We propose a nonparametric estimation approach which does not involve smoothing and thus is free of the bandwidth choice. Compared with the Fourier-transformation-based estimators, our estimators have simpler forms and thus are easier to calculate. We establish asymptotic distributions of our estimators, which allows us to consistently estimate the asymptotic variances of our estimators with the plug-in principle and enables interval estimates of the ruin probability.


Sign in / Sign up

Export Citation Format

Share Document