Economic and Environmental Assessment of a 1 MW Grid Connected Rooftop Solar PV System for Energy Efficient Building in Bangladesh

Author(s):  
Sanjib Chakraborty ◽  
Rubayet Hosain ◽  
Toufiqur Rahman ◽  
Ahmead Fazle Rabbi
Author(s):  
Rakesh Dalal ◽  
Kamal Bansal ◽  
Sapan Thapar

Rooftop solar photovoltaic(PV) installation in India have increased in last decade because of the flat 40 percent subsidy extended for rooftop solar PV systems (3 kWp and below) by the Indian government under the solar rooftop scheme. From the residential building owner's perspective, solar PV is competitive when it can produce electricity at a cost less than or equal grid electricity price, a condition referred as “grid parity”. For assessing grid parity of 3 kWp and 2 kWp residential solar PV system, 15 states capital and 19 major cities were considered  for the RET screen simulation by using solar isolation, utility grid tariff, system cost and other economic parameters. 3 kWp and 2 kWp rooftop solar PV with and without subsidy scenarios were considered for simulation using RETscreen software. We estimate that without subsidy no state could achieve grid parity for 2kWp rooftop solar PV plant. However with 3 kWp rooftop solar PV plant only 5 states could achieve grid parity without subsidy and with government subsidy number of states increased to 7, yet wide spread parity for residential rooftop solar PV is still not achieved. We find that high installation costs, subsidized utility grid supply to low energy consumer and financing rates are major barriers to grid parity.


2021 ◽  
Author(s):  
Williams S. Ebhota ◽  
Pavel Y. Tabakov

Abstract A rooftop solar photovoltaic (PV) system is an alternative electricity source that is increasingly being used for households. The potential of solar PV is location dependent that needs to be assessed before installation. This study focuses on the assessment of a solar PV potential of a site on coordinates − 29.853762°, 031.00634°, at Glenmore Crescent, Durban North, South Africa. In addition, it evaluates the performance of a 6 kW installed capacity grid-connected rooftop solar PV system to supply electricity to a household. The results, obtained from PV design and simulation tools – PV*SOL, Solargis prospect and pvPlanner, were used to analyse and establish the site and PV system technical viability. The system’s configuration is as follows: load profile - a 2-Person household with 2-children, energy consumption − 3500 kWh, system size − 6 kWp, installation type - roof mount, PV module type - c-Si - monocrystalline silicon, efficiency − 18.9%, orientation of PV modules -Azimuth 0° and Tilt 30°, inverter 95.9% (Euro efficiency), and no transformer. The results show: meteorological parameters - global horizontal irradiation (GHI) 1659.3 kWh/m2, direct normal irradiation (DNI) 1610.6 kWh/m2, air temperature 20.6°C; performance parameters - annual PV energy 8639 kWh, Specific annual yield 1403 kWh/kWp, performance ratio (PR) 74.9%, avoided CO₂ emissions 5662 kg/year, and solar fraction 42.5 %. The analysis and benchmarking of the results show that the proposed solar PV system under the current conditions is technically viable for household electrification in Durban North, South Africa.


Author(s):  
Karthik Sivaraman ◽  
Aniket Rawool

Solar rooftop photovoltaic installation is one of the most popular setups used in the country of India, being economical and apt for the space available in the country. This paper focuses on the key aspects of the design involved in the setup of the system, regarding not just the engineering design for a PV system, but also other key components such as installation site evaluation of a given rooftop to the final cost analysis. Hence, the discussion in the paper will give the average understanding of how a rooftop photovoltaic system is processed through in this country from an engineer’s point of view.


Sign in / Sign up

Export Citation Format

Share Document