Feedback Linearization of the Differentially Driven Mobile Robot: An Experimental Verification

Author(s):  
Wojciech Kowalczyk ◽  
Krzysztof Kozłowski
2021 ◽  
Vol 33 (1) ◽  
pp. 33-43
Author(s):  
Kazuhiro Funato ◽  
Ryosuke Tasaki ◽  
Hiroto Sakurai ◽  
Kazuhiko Terashima ◽  
◽  
...  

The authors have been developing a mobile robot to assist doctors in hospitals in managing medical tools and patient electronic medical records. The robot tracks behind a mobile medical worker while maintaining a constant distance from the worker. However, it was difficult to detect objects in the sensor’s invisible region, called occlusion. In this study, we propose a sensor fusion method to estimate the position of a robot tracking target indirectly by an inertial measurement unit (IMU) in addition to the direct measurement by an laser range finder (LRF) and develop a human tracking system to avoid occlusion by a mobile robot. Based on this, we perform detailed experimental verification of tracking a specified person to verify the validity of the proposed method.


Robotica ◽  
2010 ◽  
Vol 29 (3) ◽  
pp. 391-402 ◽  
Author(s):  
Khoshnam Shojaei ◽  
Alireza Mohammad Shahri ◽  
Ahmadreza Tarakameh ◽  
Behzad Tabibian

SUMMARYThis paper presents an adaptive trajectory tracking controller for a non-holonomic wheeled mobile robot (WMR) in the presence of parametric uncertainty in the kinematic and dynamic models of the WMR and actuator dynamics. The adaptive non-linear control law is designed based on input–output feedback linearization technique to get asymptotically exact cancellation for the uncertainty in the given system parameters. In order to evaluate the performance of the proposed controller, a non-adaptive controller is compared with the adaptive controller via computer simulation results. The results show satisfactory trajectory tracking performance by virtue of SPR-Lyapunov design approach. In order to verify the simulation results, a set of experiments have been carried out on a commercial mobile robot. The experimental results also show the effectiveness of the proposed controller.


2016 ◽  
Vol 85 (3-4) ◽  
pp. 539-552 ◽  
Author(s):  
Wojciech Kowalczyk ◽  
Mateusz Przybyla ◽  
Krzysztof Kozlowski

AbstractThis paper presents the results of an experimental verification of mobile robot control algorithm including obstacle detection and avoidance. The controller is based on the navigation potential function that was proposed in work (Urakubo, Nonlinear Dyn. 81(3), 1475–1487 2015). Conducted experiments considered the task of reaching and stabilization of robot in point. The navigation potential agregates information of robot position and orientation but also the repelling potentials of obstacles. The obstacle detection is performed solely with the use of laser scanner. The experiments show that the method can easily handle environments with one or two obstacles even if they instantly hide or show-up due to the scanner range limits. The experiments also indicate that the utilized control method has a good potential for being used in parallel parking task.


2014 ◽  
Vol 611 ◽  
pp. 130-136 ◽  
Author(s):  
Ľubica Miková ◽  
Michal Kelemen ◽  
Dušan Koniar

The paper deals with creation of a mathematical model of the mobile robot. For description of the kinematic variables such as position and velocity of each wheel a transformation matrix is used. The simulation model can be applied for calculation of assumed of the undercarriage centre of gravity and path of wheels. The function model was also used for experimental verification of the results of simulation experiments.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Gildeberto de Souza Cardoso ◽  
Leizer Schnitman ◽  
José Valentim dos Santos Filho ◽  
Luiz Carlos Simões Soares Júnior

This work presents a path-following controller for a unicycle robot. The main contribution of this paper is to demonstrate the restriction of transverse feedback linearization (TFL) to obtuse angles on piecewise linear paths. This restriction is experimentally demonstrated on a Kobuki mobile robot, where it is possible to observe, as a result of the limitation of the TFL, the convergence to another domain of attraction.


Author(s):  
Aliasghar Arab ◽  
Jingang Yi ◽  
Mohammad Mahdi Fateh ◽  
Soroush Arabshahi

This paper presents a robust control design for a low-cost mobile robot under modeling uncertainties and external disturbances. We use a radial basis function neural network (RBFNN) to estimate and compensate for the model uncertainties and external disturbances. The proposed control design is model-free with guaranteed stability and good path-following performance. The RBFNN weight regulation and adaptive gains are designed based on the Lypanov method. Simulation and experimental results illustrate the design and demonstrate the strength of the proposed control applied to a nonholonomic wheeled mobile robot driven by low-cost permanent magnet dc motors without shaft encoders. The comparison results between proposed control and feedback linearization control confirm the effective role of the compensator in terms of precision, simplicity of design and computations.


Sign in / Sign up

Export Citation Format

Share Document