Novel Didactic Proof Assistant for First-Order Logic Natural Deduction

Author(s):  
Jorge Pais ◽  
Álvaro Tasistro
2007 ◽  
Vol 5 ◽  
Author(s):  
Tigran M. Galoyan

In this paper we discuss strong normalization for natural deduction in the →∀-fragment of first-order logic. The method of collapsing types is used to transfer the result (concerning strong normalization) from implicational logic to first-order logic. The result is improved by a complement, which states that the length of any reduction sequence of derivation term r in first-order logic is equal to the length of the corresponding reduction sequence of its collapse term rc in implicational logic.


2010 ◽  
Vol 3 (2) ◽  
pp. 175-227 ◽  
Author(s):  
PETER MILNE

Various natural deduction formulations of classical, minimal, intuitionist, and intermediate propositional and first-order logics are presented and investigated with respect to satisfaction of the separation and subformula properties. The technique employed is, for the most part, semantic, based on general versions of the Lindenbaum and Lindenbaum–Henkin constructions. Careful attention is paid (i) to which properties of theories result in the presence of which rules of inference, and (ii) to restrictions on the sets of formulas to which the rules may be employed, restrictions determined by the formulas occurring as premises and conclusion of the invalid inference for which a counterexample is to be constructed. We obtain an elegant formulation of classical propositional logic with the subformula property and a singularly inelegant formulation of classical first-order logic with the subformula property, the latter, unfortunately, not a product of the strategy otherwise used throughout the article. Along the way, we arrive at an optimal strengthening of the subformula results for classical first-order logic obtained as consequences of normalization theorems by Dag Prawitz and Gunnar Stålmarck.


1995 ◽  
Vol 5 (3) ◽  
pp. 323-349 ◽  
Author(s):  
Philippa Gardner

We propose a new framework for representing logics, called LF+, which is based on the Edinburgh Logical Framework. The new framework allows us to give, apparently for the first time, general definitions that capture how well a logic has been represented. These definitions are possible because we are able to distinguish in a generic way that part of the LF+ entailment corresponding to the underlying logic. This distinction does not seem to be possible with other frameworks. Using our definitions, we show that, for example, natural deduction first-order logic can be well-represented in LF+, whereas linear and relevant logics cannot. We also show that our syntactic definitions of representation have a simple formulation as indexed isomorphisms, which both confirms that our approach is a natural one and provides a link between type-theoretic and categorical approaches to frameworks.


2012 ◽  
Vol 5 (4) ◽  
pp. 710-719 ◽  
Author(s):  
TOR SANDQVIST

AbstractA constructive proof is provided for the claim that classical first-order logic admits of a natural deduction formulation featuring the subformula property.


1986 ◽  
Vol 51 (2) ◽  
pp. 393-411 ◽  
Author(s):  
Paul C. Gilmore

AbstractThe comprehension principle of set theory asserts that a set can be formed from the objects satisfying any given property. The principle leads to immediate contradictions if it is formalized as an axiom scheme within classical first order logic. A resolution of the set paradoxes results if the principle is formalized instead as two rules of deduction in a natural deduction presentation of logic. This presentation of the comprehension principle for sets as semantic rules, instead of as a comprehension axiom scheme, can be viewed as an extension of classical logic, in contrast to the assertion of extra-logical axioms expressing truths about a pre-existing or constructed universe of sets. The paradoxes are disarmed in the extended classical semantics because truth values are only assigned to those sentences that can be grounded in atomic sentences.


2009 ◽  
Vol 19 (12) ◽  
pp. 3091-3099 ◽  
Author(s):  
Gui-Hong XU ◽  
Jian ZHANG

Author(s):  
Tim Button ◽  
Sean Walsh

Chapters 6-12 are driven by questions about the ability to pin down mathematical entities and to articulate mathematical concepts. This chapter is driven by similar questions about the ability to pin down the semantic frameworks of language. It transpires that there are not just non-standard models, but non-standard ways of doing model theory itself. In more detail: whilst we normally outline a two-valued semantics which makes sentences True or False in a model, the inference rules for first-order logic are compatible with a four-valued semantics; or a semantics with countably many values; or what-have-you. The appropriate level of generality here is that of a Boolean-valued model, which we introduce. And the plurality of possible semantic values gives rise to perhaps the ‘deepest’ level of indeterminacy questions: How can humans pin down the semantic framework for their languages? We consider three different ways for inferentialists to respond to this question.


Sign in / Sign up

Export Citation Format

Share Document