Investigating the Effect of Elevated CO2 in the Growth Environment of Salt-Stressed Plants Using Integrated Omic Analyses

2014 ◽  
pp. 49-69
Author(s):  
Matthaios-Emmanouil P. Papadimitropoulos ◽  
Maria I. Klapa
2020 ◽  
Vol 9 (33) ◽  
pp. cs242050124
Author(s):  
Manasa ◽  
R.V. Manju ◽  
Roy Stephen ◽  
M.M. Viji ◽  
R. Beena ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 517a-517
Author(s):  
Eric L. Zeldin ◽  
Rodney A. Serres ◽  
Brent H. McCown

`Stevens' cranberry was genetically engineered to confer tolerance to the broad spectrum herbicide glufosinate. Initially, herbicide tolerance was verified by spraying greenhouse plants with the commercial formulation Liberty. Although one transformant showed significant tolerance, the tolerance level was below that required to kill goldenrod, a common weed of cranberry beds. This transformant was propagated and the plants established outdoors in a coldframe, yielding a growth form more typical of field-grown plants than that of greenhouse-grown plants. These plants, as well as untransformed cranberry and goldenrod plants, were sprayed with various levels of the herbicide. The transformed plants were not killed at glufosinate concentrations up to 1000 ppm, although delayed growth did occur. Some runner tip injury was observed at 500 ppm as well as widespread shoot tip death at higher levels. The above-ground parts of goldenrod plants were killed at 400 ppm with significant injury at 200 ppm. Untransformed cranberry plants were killed at 300 ppm and had extensive tip death even at 100 ppm. Transformed cranberry plants with confirmed “field” tolerance were re-established in the greenhouse and new vegetative growth was forced. When these plants were sprayed with glufosinate, significant shoot tip injury was observed at levels as low as 100 ppm. The degree of herbicide tolerance of transformed cranberry appears to be modulated by the growth environment, which may affect the expression of the inserted genes or the physiological sensitivity of the impacted tissues.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Andrea Y Frommel ◽  
Justin Carless ◽  
Brian P V Hunt ◽  
Colin J Brauner

Abstract Pacific salmon stocks are in decline with climate change named as a contributing factor. The North Pacific coast of British Columbia is characterized by strong temporal and spatial heterogeneity in ocean conditions with upwelling events elevating CO2 levels up to 10-fold those of pre-industrial global averages. Early life stages of pink salmon have been shown to be affected by these CO2 levels, and juveniles naturally migrate through regions of high CO2 during the energetically costly phase of smoltification. To investigate the physiological response of out-migrating wild juvenile pink salmon to these naturally occurring elevated CO2 levels, we captured fish in Georgia Strait, British Columbia and transported them to a marine lab (Hakai Institute, Quadra Island) where fish were exposed to one of three CO2 levels (850, 1500 and 2000 μatm CO2) for 2 weeks. At ½, 1 and 2 weeks of exposure, we measured their weight and length to calculate condition factor (Fulton’s K), as well as haematocrit and plasma [Cl−]. At each of these times, two additional stressors were imposed (hypoxia and temperature) to provide further insight into their physiological condition. Juvenile pink salmon were largely robust to elevated CO2 concentrations up to 2000 μatm CO2, with no mortality or change in condition factor over the 2-week exposure duration. After 1 week of exposure, temperature and hypoxia tolerance were significantly reduced in high CO2, an effect that did not persist to 2 weeks of exposure. Haematocrit was increased by 20% after 2 weeks in the CO2 treatments relative to the initial measurements, while plasma [Cl−] was not significantly different. Taken together, these data indicate that juvenile pink salmon are quite resilient to naturally occurring high CO2 levels during their ocean outmigration.


1996 ◽  
Vol 2 (1) ◽  
pp. 35-47 ◽  
Author(s):  
H. W. HUNT ◽  
E. T. ELLIOTT ◽  
J. K. DETLING ◽  
J. A. MORGAN ◽  
D.-X. CHEN

Sign in / Sign up

Export Citation Format

Share Document