Faculty Opinions recommendation of Plant stoichiometric responses to elevated CO2 vary with nitrogen and phosphorus inputs: Evidence from a global-scale meta-analysis.

Author(s):  
Ingrid Burke
2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Wenjuan Huang ◽  
Benjamin Z. Houlton ◽  
Alison R. Marklein ◽  
Juxiu Liu ◽  
Guoyi Zhou

2002 ◽  
Vol 8 (8) ◽  
pp. 695-709 ◽  
Author(s):  
Elizabeth A. Ainsworth ◽  
Phillip A. Davey ◽  
Carl J. Bernacchi ◽  
Orla C. Dermody ◽  
Emily A. Heaton ◽  
...  

2021 ◽  
Vol 495 ◽  
pp. 119384
Author(s):  
Zhiqiang Wang ◽  
Heng Huang ◽  
Buqing Yao ◽  
Jianming Deng ◽  
Zeqing Ma ◽  
...  

2019 ◽  
Author(s):  
Juan C. Villada ◽  
Maria F. Duran ◽  
Patrick K. H. Lee

Understanding the interplay between genotype and phenotype is a fundamental goal of functional genomics. Methane oxidation is a microbial phenotype with global-scale significance as part of the carbon biogeochemical cycle, and is a sink for greenhouse gas. Microorganisms that oxidize methane (methanotrophs) are taxonomically diverse and widespread around the globe. Recent reports have suggested that type Ia methanotrophs are the most prevalent methane-oxidizing bacteria in different environments. In methanotrophic bacteria, complete methane oxidation is encoded in four operons (pmoCAB, mmoXYZBCD, mxaFI, andxoxF), but how evolution has shaped these genes to execute methane oxidation remains poorly understood. Here, we used a genomic meta-analysis to investigate the coding sequences that encode methane oxidation. By analyzing isolate and metagenome-assembled genomes from phylogenetically and geographically diverse sources, we detected an anomalous nucleotide composition bias in the coding sequences of particulate methane monooxygenase genes (pmoCAB) from type Ia methanotrophs around the globe. We found that this was a highly conserved sequence that optimizes codon usage in order to maximize translation efficiency and accuracy, while minimizing the synthesis cost of transcripts and proteins. We show that among the seven types of methanotrophs, only type Ia methanotrophs possess a unique coding sequence of thepmoCABoperon that is under positive selection for optimal resource allocation and efficient synthesis of transcripts and proteins in environmental counter gradients with high oxygen and low methane concentrations. This adaptive trait possibly enables type Ia methanotrophs to respond robustly to fluctuating methane availability and explains their global prevalence.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Xinhui Wang ◽  
Xuexian Fang ◽  
Zhaoxian Cai ◽  
Xiaotian Wu ◽  
Xiaotong Gao ◽  
...  

The recent outbreak of COVID-19 has been rapidly spreading on a global scale. To date, there is no specific vaccine against the causative virus, SARS-CoV-2, nor is there an effective medicine for treating COVID-19, thus raising concerns with respect to the effect of risk factors such as clinical course and pathophysiological parameters on disease severity and outcome in patients with COVID-19. By extracting and analyzing all available published clinical data, we identified several major clinical characteristics associated with increased disease severity and mortality among patients with COVID-19. Specifically, preexisting chronic conditions such as hypertension, cardiovascular disease, chronic kidney disease, and diabetes are strongly associated with an increased risk of developing severe COVID-19; surprisingly, however, we found no correlation between chronic liver disease and increased disease severity. In addition, we found that both acute cardiac injury and acute kidney injury are highly correlated with an increased risk of COVID-19-related mortality. Given the high risk of comorbidity and the high mortality rate associated with tissue damage, organ function should be monitored closely in patients diagnosed with COVID-19, and this approach should be included when establishing new guidelines for managing these high-risk patients. Moreover, additional clinical data are needed in order to determine whether a supportive therapy can help mitigate the development of severe, potentially fatal complications, and further studies are needed to identify the pathophysiology and the mechanism underlying this novel coronavirus-associated infectious disease. Taken together, these findings provide new insights regarding clinical strategies for improving the management and outcome of patients with COVID-19.


2019 ◽  
Author(s):  
Micah N. Scholer ◽  
Matt Strimas-Mackey ◽  
Jill E. Jankowski

AbstractTropical birds are purported to be longer lived than temperate species of similar size, but it has not been shown whether avian survival rates covary with a latitudinal gradient worldwide. Here, we perform a global-scale meta-analysis to investigate the extent of the latitudinal survival gradient. We modeled survival as a function of latitude for the separate northern and southern hemispheres, and considered phylogenetic relationships and extrinsic (climate) and intrinsic (life history) predictors hypothesized to moderate these effects. Using a database of 1,004 estimates from 246 studies of avian survival, we demonstrate that in general a latitudinal survival gradient exists in the northern hemisphere, is dampened or absent for southern hemisphere species, and that survival rates of passerine birds largely account for these trends. We found no indication that the extrinsic climate factors were better predictors of survival than latitude alone, but including species’ intrinsic traits improved model predictions. Notably, species with smaller clutch size and larger body mass showed higher survival. Our results illustrate that while some tropical birds may be longer lived than their temperate counterparts, the shape of the latitude-survival gradient differs by geographic region and is strongly influenced by species’ intrinsic traits.


Sign in / Sign up

Export Citation Format

Share Document