Uncovering Radiation Chemistry in the Solid State Through Periodic Density-Functional Calculations: Confrontation with Experimental Results and Beyond

Author(s):  
Ewald Pauwels
2018 ◽  
Vol 74 (12) ◽  
pp. 1641-1649
Author(s):  
Wei-Tsung Lee ◽  
Matthias Zeller ◽  
David Upp ◽  
Yuliya Politanska ◽  
Doug Steinman ◽  
...  

Treatment of the ortho-triazacyclophane 1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-triene [(C6H5)3(NH)(NCH3)2, L1] with Fe[N(SiMe3)2]2 yields the dimeric iron(II) complex bis(μ-1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-trien-7-ido)bis[(μ-1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-trien-7-ido)iron(II)], [Fe(C20H18N3)4] or Fe2(L1)4 (9). Dissolution of 9 in tetrahydrofuran (THF) results in solvation by two THF ligands and the formation of a simpler monoiron complex, namely bis(μ-1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-trien-7-ido-κN 7)bis(tetrahydrofuran-κO)iron(II), [Fe(C20H18N3)2(C4H8O)2] or (L1)2Fe(THF)2 (10). The reaction is reversible and 10 reverts in vacuo to diiron complex 9. In the structures of both 9 and 10, the monoanionic triazacyclophane ligand L1− is observed in only the less-symmetric saddle conformation. No bowl-shaped crown conformers are observed in the solid state, thus preventing chelating κ3-coordination to the metal as had been proposed earlier based on density functional theory (DFT) calculations. Instead, the L1− ligands are bound in either a η2-chelating fashion through the amide and one amine donor (for one of the four ligands of 9), or solely through their amide N atoms in an even simpler monodentate η1-coordination mode. Density functional calculations on dimer 9 revealed nearly full cationic charges on each Fe atom and no bonding interaction between the two metal centers, consistent with the relatively long Fe...Fe distance of 2.912 (1) Å observed in the solid state.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 670 ◽  
Author(s):  
Rizka N. Fadilla ◽  
Febdian Rusydi ◽  
Nufida D. Aisyah ◽  
Vera Khoirunisa ◽  
Hermawan K. Dipojono ◽  
...  

Acetylcholine, which is associated with Alzheimer’s disease, is widely known to have conformers. The preference of each conformer to undergo neutral hydrolysis is yet to be considered. In this study, we employed density-functional calculations to build the conformers and investigated their preference in one-step neutral hydrolysis. The results showed the preference in ten possible hydrolysis pathways involving seven acetylcholine conformers (reactant), four transition state structures, and two choline conformers (product). Three out of the seven acetylcholine conformers predicted from the results confirmed experimental findings on the conformers stability. We suggested that two out of ten possible pathways were observed in the experimental results based on agreement in reaction energy. Eventually, this study will emphasize the importance of considering acetylcholine conformers in its hydrolysis study.


ChemInform ◽  
2005 ◽  
Vol 36 (13) ◽  
Author(s):  
Tilo Soehnel ◽  
Holger Hermann ◽  
Peter Schwerdtfeger

2005 ◽  
Vol 109 (1) ◽  
pp. 526-531 ◽  
Author(s):  
Tilo Söhnel ◽  
Holger Hermann ◽  
Peter Schwerdtfeger

Sign in / Sign up

Export Citation Format

Share Document