Citywatcher: Annotating and Searching Video Data Streams for Smart Cities Applications

Author(s):  
Alexey Medvedev ◽  
Arkady Zaslavsky ◽  
Vladimir Grudinin ◽  
Sergey Khoruzhnikov
Keyword(s):  
Smart Cities ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 349-371
Author(s):  
Hassan Mehmood ◽  
Panos Kostakos ◽  
Marta Cortes ◽  
Theodoros Anagnostopoulos ◽  
Susanna Pirttikangas ◽  
...  

Real-world data streams pose a unique challenge to the implementation of machine learning (ML) models and data analysis. A notable problem that has been introduced by the growth of Internet of Things (IoT) deployments across the smart city ecosystem is that the statistical properties of data streams can change over time, resulting in poor prediction performance and ineffective decisions. While concept drift detection methods aim to patch this problem, emerging communication and sensing technologies are generating a massive amount of data, requiring distributed environments to perform computation tasks across smart city administrative domains. In this article, we implement and test a number of state-of-the-art active concept drift detection algorithms for time series analysis within a distributed environment. We use real-world data streams and provide critical analysis of results retrieved. The challenges of implementing concept drift adaptation algorithms, along with their applications in smart cities, are also discussed.


2020 ◽  
Vol 2 (1) ◽  
pp. 26-37
Author(s):  
Dr. Pasumponpandian

The progress of internet of things at a rapid pace and simultaneous development of the technologies and the processing capabilities has paved way for the development of decentralized systems that are relying on cloud services. Though the decentralized systems are founded on cloud complexities still prevail in transferring all the information’s that are been sensed through the IOT devices to the cloud. This because of the huge streams of information’s gathered by certain applications and the expectation to have a timely response, incurring minimized delay, computing energy and enhanced reliability. So this kind of decentralization has led to the development of middle layer between the cloud and the IOT, and was termed as the Edge layer, meaning bringing down the service of the cloud to the user edge. The paper puts forth the analysis of the data stream processing in the edge layer taking in the complexities involved in the computing the data streams of IOT in an edge layer and puts forth the real time analytics in the edge layer to examine the data streams of the internet of things offering a data- driven insight for parking system in the smart cities.


Author(s):  
James M. Kang ◽  
Muhammad Aurangzeb Ahmad ◽  
Ankur Teredesai ◽  
Roger Gaborski

Author(s):  
Mien Doan ◽  
Vu Tran ◽  
Hung Huynh ◽  
Hiep Huynh

2021 ◽  
Author(s):  
Steven M. Peterson ◽  
Rajesh P. N. Rao ◽  
Bingni W. Brunton

AbstractRecent advances in neural decoding have accelerated the development of brain-computer interfaces aimed at assisting users with everyday tasks such as speaking, walking, and manipulating objects. However, current approaches for training neural decoders commonly require large quantities of labeled data, which can be laborious or infeasible to obtain in real-world settings. One intriguing alternative uses self-supervised models that share self-generated pseudo-labels between two data streams; such models have shown exceptional performance on unlabeled audio and video data, but it remains unclear how well they extend to neural decoding. Here, we learn neural decoders without labels by leveraging multiple simultaneously recorded data streams, including neural, kinematic, and physiological signals. Specifically, we apply cross-modal, self-supervised deep clustering to decode movements from brain recordings; these decoders are compared to supervised and unimodal, self-supervised models. We find that sharing pseudo-labels between two data streams during training substantially increases decoding performance compared to unimodal, self-supervised models, with accuracies approaching those of supervised decoders trained on labeled data. Next, we develop decoders trained on three modalities that match or slightly exceed the performance of supervised models, achieving state-of-the-art neural decoding accuracy. Cross-modal decoding is a flexible, promising approach for robust, adaptive neural decoding in real-world applications without any labels.


2019 ◽  
Vol 22 (1) ◽  
pp. 297-323 ◽  
Author(s):  
Henry E. Brady

Big data and data science are transforming the world in ways that spawn new concerns for social scientists, such as the impacts of the internet on citizens and the media, the repercussions of smart cities, the possibilities of cyber-warfare and cyber-terrorism, the implications of precision medicine, and the consequences of artificial intelligence and automation. Along with these changes in society, powerful new data science methods support research using administrative, internet, textual, and sensor-audio-video data. Burgeoning data and innovative methods facilitate answering previously hard-to-tackle questions about society by offering new ways to form concepts from data, to do descriptive inference, to make causal inferences, and to generate predictions. They also pose challenges as social scientists must grasp the meaning of concepts and predictions generated by convoluted algorithms, weigh the relative value of prediction versus causal inference, and cope with ethical challenges as their methods, such as algorithms for mobilizing voters or determining bail, are adopted by policy makers.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3594 ◽  
Author(s):  
Hung Cao ◽  
Monica Wachowicz

Exploring Internet of Things (IoT) data streams generated by smart cities means not only transforming data into better business decisions in a timely way but also generating long-term location intelligence for developing new forms of urban governance and organization policies. This paper proposes a new architecture based on the edge-fog-cloud continuum to analyze IoT data streams for delivering data-driven insights in a smart parking scenario.


Sign in / Sign up

Export Citation Format

Share Document