3D Intervertebral Disc Localization and Segmentation from MR Images by Data-Driven Regression and Classification

Author(s):  
Cheng Chen ◽  
D. Belavy ◽  
Guoyan Zheng
1998 ◽  
Vol 16 (10) ◽  
pp. 1227-1235 ◽  
Author(s):  
Olivier Musse ◽  
Jean-Paul Armspach ◽  
Izzie Jacques Namer ◽  
Fabrice Heitz ◽  
Franciszek Hennel ◽  
...  
Keyword(s):  

Author(s):  
John M. Peloquin ◽  
Jonathon H. Yoder ◽  
Nathan T. Jacobs ◽  
Sung M. Moon ◽  
Alexander C. Wright ◽  
...  

Degeneration of the intervertebral disc (IVD) is implicated in low back pain, which is a costly and prevalent disease. Since the IVD is a mechanically active organ, it is important to consider its mechanical behavior as one factor in the degenerate pathology. Strain can be measured directly by imaging methods, but the stress distribution within the disc must be calculated. The stress distribution for a particular strain state is dependent on the IVD’s material properties and its geometry. While the material properties of the tissues comprising IVD have been extensively studied, its three-dimensional geometry remains incompletely characterized. Prior whole-disc models have been constructed from single IVDs. While this approach ensures that the geometry has a physiological basis, it is uncertain the degree to which results from a single IVD shape can be generalized to the entire population.


2016 ◽  
Vol 24 (2) ◽  
pp. 248-255 ◽  
Author(s):  
Diana M. Molinares ◽  
Timothy T. Davis ◽  
Daniel A. Fung

OBJECT The purpose of this study was to analyze MR images of the lumbar spine and document: 1) the oblique corridor at each lumbar disc level between the psoas muscle and the great vessels, and 2) oblique access to the L5–S1 disc space. Access to the lumbar spine without disruption of the psoas muscle could translate into decreased frequency of postoperative neurological complications observed after a transpsoas approach. The authors investigated the retroperitoneal oblique corridor of L2–S1 as a means of surgical access to the intervertebral discs. This oblique approach avoids the psoas muscle and is a safe and potentially superior alternative to the lateral transpsoas approach used by many surgeons. METHODS One hundred thirty-three MRI studies performed between May 4, 2012, and February 27, 2013, were randomly selected from the authors’ database. Thirty-three MR images were excluded due to technical issues or altered lumbar anatomy due to previous spine surgery. The oblique corridor was defined as the distance between the left lateral border of the aorta (or iliac artery) and the anterior medial border of the psoas. The L5–S1 oblique corridor was defined transversely from the midsagittal line of the inferior endplate of L-5 to the medial border of the left common iliac vessel (axial view) and vertically to the first vascular structure that crossed midline (sagittal view). RESULTS The oblique corridor measurements to the L2–5 discs have the following mean distances: L2–3 = 16.04 mm, L3–4 = 14.21 mm, and L4–5 = 10.28 mm. The L5–S1 corridor mean distance was 10 mm between midline and left common iliac vessel, and 10.13 mm from the first midline vessel to the inferior endplate of L-5. The bifurcation of the aorta and confluence of the vena cava were also analyzed in this study. The aortic bifurcation was found at the L-3 vertebral body in 2% of the MR images, at the L3–4 disc in 5%, at the L-4 vertebral body in 43%, at the L4–5 disc in 11%, and at the L-5 vertebral body in 9%. The confluence of the iliac veins was found at lower levels: 45% at the L-4 level, 19.39% at the L4–5 intervertebral disc, and 34% at the L-5 vertebral body. CONCLUSIONS An oblique corridor of access to the L2–5 discs was found in 90% of the MR images (99% access to L2–3, 100% access to L3–4, and 91% access to L4–5). Access to the L5–S1 disc was also established in 69% of the MR images analyzed. The lower the confluence of iliac veins, the less probable it was that access to the L5–S1 intervertebral disc space was observed. These findings support the use of lumbar MRI as a tool to predetermine the presence of an oblique corridor for access to the L2–S1 intervertebral disc spaces prior to lumbar spine surgery.


2013 ◽  
Vol 17 (1) ◽  
pp. 43-61 ◽  
Author(s):  
Max W.K. Law ◽  
KengYeow Tay ◽  
Andrew Leung ◽  
Gregory J. Garvin ◽  
Shuo Li

2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Sun ◽  
Han Lv ◽  
Meng Zhang ◽  
Mengyi Li ◽  
Lei Zhao ◽  
...  

BackgroundIn this study, we proposed to use MR images at L1-L2 (lumbar) intervertebral disc level to measure abdominal fat area in patients with obesity. The quantitative results would provide evidence for the individualized assessment of the severity of obesity.MethodsAll patients in the IRB-approved database of Beijing Friendship Hospital who underwent bariatric surgery between November 2017 and November 2019 were recruited. We retrospectively reviewed upper abdominal magnetic resonance (MR) data before surgery. We analyzed the correlation and consistency of the area of abdominal subcutaneous adipose tissue (ASAT) and visceral adipose tissue (VAT) measured at the L1-L2 and L2-L3 levels on MR images. We randomly distributed the cases into prediction model training data and testing data at a ratio of 7:3.ResultsTwo hundred and forty-five subjects were included. The ASAT and VAT results within the L1-L2 and L2-L3 levels were very similar and highly correlated (maleASAT: r=0.98, femaleASAT: r=0.93; maleVAT: r=0.91, femaleVAT: r=0.88). There was no substantial systematic deviation among the results at the two levels, except for the ASAT results in males. The intraclass correlation coefficients (ICCs) were 0.91 and 0.93 for maleASAT and femaleASAT, and 0.88 and 0.87 for maleVAT and femaleVAT, respectively. The ASAT/VAT area at the L2-L3 level was well predicted. The coefficient β of linear regression that predicted L2-L3 ASAT from L1-L2 ASAT was 1.11 for males and 0.99 for females. The R-squares were 0.97 and 0.91, respectively. For VAT prediction, the coefficient β was 1.02 for males and 0.96 for females. The R-squares were 0.82 and 0.77, respectively.ConclusionFor patients with obesity, the L1-L2 intervertebral disc level can be used as the substitution of L2-L3 level in abdominal fat measurement.


2018 ◽  
Vol 77 (20) ◽  
pp. 27215-27230 ◽  
Author(s):  
A. Beulah ◽  
T. Sree Sharmila ◽  
V. K. Pramod

Sign in / Sign up

Export Citation Format

Share Document