Low Mach Number Limits and Acoustic Waves

Author(s):  
Ning Jiang ◽  
Nader Masmoudi
AIAA Journal ◽  
1992 ◽  
Vol 30 (7) ◽  
pp. 1708-1715 ◽  
Author(s):  
Meng Wang ◽  
David R. Kassoy

1982 ◽  
Vol 117 ◽  
pp. 425-441 ◽  
Author(s):  
Donald Rockwell ◽  
Andreas Schachenmann

Self-generation of highly organized waves in a nominally turbulent jet at very low Mach number can arise from its impingement upon the downstream orifice of an axisymmetric cavity, having an impingement length much shorter than the corresponding acoustic wavelength. The oscillation frequencies are compatible with the resonant modes of a long pipe located upstream of the cavity and with jet-instability frequencies based on the column mode (0·3 [siml ] SD [siml ] 0·6), as well as the near-field shear layer mode (0·016 [siml ] Sθ0 [siml ] 0·03). Moreover, the frequency of the organized wave is constant from separation to impingement; consequently vortex pairing does not occur.Within the cavity, the pressure amplitude associated with the organized wave is directly related to the phase difference between the organized velocity fluctuations at separation and impingement. Maximum pressure amplitude occurs when this phase difference, measured along the cavity (i.e. jet) centre-line, is 2nπ. Streamwise amplitude and phase distributions of the organized wave cannot be explained from purely hydrodynamic considerations; however, they can be effectively modelled by superposing contributions from hydrodynamic and acoustic waves. This aspect has important consequences for externally excited jets as well.


2002 ◽  
Vol 181 (2) ◽  
pp. 545-563 ◽  
Author(s):  
Clifton Wall ◽  
Charles D. Pierce ◽  
Parviz Moin

A line vortex which has uniform vorticity 2Ω 0 in its core is subjected to a small two-dimensional disturbance whose dependence on polar angle is e imθ . The stability is examined according to the equations of compressible, inviscid flow in a homentropic medium. The boundary condition at infinity is that of outgoing acoustic waves, and it is found that this capacity to radiate leads to a slow instability by comparison with the corresponding incompressible vortex which is stable. Numerical eigenvalues are computed as functions of the mode number m and the Mach number M based on the circumferential speed of the vortex. These are compared with an asymptotic analysis for the m = 2 mode at low Mach number in which it is found that the growth rate is (π/ 32) M 4 Ω 0 in good agreement with the numerical results.


2010 ◽  
Vol 82 (1) ◽  
Author(s):  
Lénaic Bonneau ◽  
Tristan Catelin-Jullien ◽  
B. Andreotti

2016 ◽  
Vol 1 (7) ◽  
Author(s):  
Jean-Philippe Péraud ◽  
Andy Nonaka ◽  
Anuj Chaudhri ◽  
John B. Bell ◽  
Aleksandar Donev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document