Prediction of the “Average” Peak Nonlinear Seismic Response of Asymmetric Buildings Under Bi-directional Ground Motion Acting at an Arbitrary Angle of Incidence

Author(s):  
Kenji Fujii
2005 ◽  
Vol 35 (1) ◽  
pp. 21-38 ◽  
Author(s):  
Iunio Iervolino ◽  
Gaetano Manfredi ◽  
Edoardo Cosenza

2005 ◽  
Vol 42 (2) ◽  
pp. 365-380 ◽  
Author(s):  
M Hesham El Naggar ◽  
Mohsen Ali Shayanfar ◽  
Mehrdad Kimiaei ◽  
Ali Akbar Aghakouchak

The seismic response of pile-supported offshore structures is strongly affected by the nonlinear behavior of the supporting piles. Nonlinear response of the pile foundation is the most important source of potential nonlinearity in the dynamic response of offshore platforms to earthquake excitations. It is often necessary to perform a dynamic analysis of offshore platforms that accounts for soil nonlinearity, discontinuity conditions at pile–soil interfaces, energy dissipation through soil radiation damping, and structural nonlinear behaviors of piles. In this paper, an attempt is made to develop an inexpensive and practical procedure, compatible with readily available structural analysis software, for estimating the lateral response of flexible piles embedded in layered soil deposits subjected to seismic loading. In the proposed model a beam on nonlinear Winkler foundation (BNWF) approach, consisting of simple nonlinear springs, dashpots, and contact elements, is used. This model was incorporated into a finite element program, ANSYS, which was used to compute the response of laterally excited piles. A nonlinear approach was used for seismic free-field ground motion analysis. The computed responses compared well with the centrifuge test results. This paper deals with the effects of free-field ground motion analysis on nonlinear seismic behavior of embedded piles. Different parts of a BNWF model, together with quantitative and qualitative findings and conclusions for dynamic nonlinear response of offshore piles, are discussed and addressed in detail.Key words: nonlinear, seismic response, offshore piles, seismic pile–soil interaction, BNWF models.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Piotr Adam Bońkowski ◽  
Juliusz Kuś ◽  
Zbigniew Zembaty

AbstractRecent research in engineering seismology demonstrated that in addition to three translational seismic excitations along x, y and z axes, one should also consider rotational components about these axes when calculating design seismic loads for structures. The objective of this paper is to present the results of a seismic response numerical analysis of a mine tower (also called in the literature a headframe or a pit frame). These structures are used in deep mining on the ground surface to hoist output (e.g. copper ore or coal). The mine towers belong to the tall, slender structures, for which rocking excitations may be important. In the numerical example, a typical steel headframe 64 m high is analysed under two records of simultaneous rocking and horizontal seismic action of an induced mine shock and a natural earthquake. As a result, a complicated interaction of rocking seismic effects with horizontal excitations is observed. The contribution of the rocking component may sometimes reduce the overall seismic response, but in most cases, it substantially increases the seismic response of the analysed headframe. It is concluded that in the analysed case of the 64 m mining tower, the seismic response, including the rocking ground motion effects, may increase up to 31% (for natural earthquake ground motion) or even up to 135% (for mining-induced, rockburst seismic effects). This means that not only in the case of the design of very tall buildings or industrial chimneys but also for specific yet very common structures like mine towers, including the rotational seismic effects may play an important role.


Sign in / Sign up

Export Citation Format

Share Document