Green Synthesis of Metallic and Metal Oxide Nanoparticles and Their Antibacterial Activities

Author(s):  
P. C. Nagajyothi ◽  
T. V. M. Sreekanth
Author(s):  
Sagadevan Suresh ◽  
Selvaraj Vennila ◽  
J. Anita Lett ◽  
Is Fatimah ◽  
Faruq Mohammad ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 766 ◽  
Author(s):  
Harsh Kumar ◽  
Kanchan Bhardwaj ◽  
Kamil Kuča ◽  
Anu Kalia ◽  
Eugenie Nepovimova ◽  
...  

Green synthesis has gained wide attention as a sustainable, reliable, and eco-friendly approach to the synthesis of a variety of nanomaterials, including hybrid materials, metal/metal oxide nanoparticles, and bioinspired materials. Plant flowers contain diverse secondary compounds, including pigments, volatile substances contributing to fragrance, and other phenolics that have a profound ethnobotanical relevance, particularly in relation to the curing of diseases by ‘Pushpa Ayurveda’ or floral therapy. These compounds can be utilized as potent reducing agents for the synthesis of a variety of metal/metal oxide nanoparticles (NPs), such as gold, silver, copper, zinc, iron, and cadmium. Phytochemicals from flowers can act both as reducing and stabilizing agents, besides having a role as precursor molecules for the formation of NPs. Furthermore, the synthesis is mostly performed at ambient room temperatures and is eco-friendly, as no toxic derivatives are formed. The NPs obtained exhibit unique and diverse properties, which can be harnessed for a variety of applications in different fields. This review reports the use of a variety of flower extracts for the green synthesis of several types of metallic nanoparticles and their applications. This review shows that flower extract was mainly used to design gold and silver nanoparticles, while other metals and metal oxides were less explored in relation to this synthesis. Flower-derived silver nanoparticles show good antibacterial, antioxidant, and insecticidal activities and can be used in different applications.


2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Nhung H. A. Nguyen ◽  
Vinod Vellora Thekkae Padil ◽  
Vera I. Slaveykova ◽  
Miroslav Černík ◽  
Alena Ševců

2021 ◽  
Vol 3 (1) ◽  
pp. 1-25
Author(s):  
Hemra Hamrayev ◽  
Kamyar Shameli ◽  
Mostafa Yusefi ◽  
Serdar Korpayev

Zinc oxide is of significant importance for many industries due to its versatile properties, which have been enhanced with the production of this material in the nanoscale. Recent interest in the preparation of metal oxide nanoparticles using biological approaches has been reported in the literature. This technique known as “green synthesis” is an environmentally benign process than conventional methods like physical and chemical synthesis methods. Zinc oxide nanoparticles (ZnO-NPs) have been successfully obtained by green synthesis using different biological substrates like chitosan. Chitosan is biocompatible, biodegradable polymer having exclusive physical and chemical properties. Chitosan/metal oxide nanocomposite is a promising nanomaterial with enhanced properties for multiple functionalities. Therefore, this review discusses favorable approach in the formation of cross-linked Chitosan/ZnO nanocomposites attracting significant attention in various fields such biomedical due to their unique biodegradable, biocompatible, non-toxic nature. The use of biological sources, fabrication of green synthesized ZnO nanoparticles and its applications is briefly discussed. Overall, this review is a comprehensive study for the synthesis of ZnO-NPs using biological sources counting on their features and applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Xolile Fuku ◽  
Abdoulaye Diallo ◽  
Malik Maaza

Most recently, green synthesis of metal oxide nanoparticles has become an interesting subject of the nanoscience and nanotechnology. The use of plant systems has been deemed a green route and a dependable method for nanoparticle biosynthesis, owing to its environmental friendly nature. The present work demonstrates the bioreductive green synthesis of nanosized zinc oxide (ZnO) using peel extracts of pomegranate. Highly crystalline ZnO nanoparticles (ZnO NPs) which are 5 nm in particle size were characterised by HRTEM and XRD. FT-IR spectra confirmed the presence of the biomolecules and formation of plant protein-coated ZnO NPs and also the pure ZnO NPs. Electrochemical investigation revealed the redox properties and the conductivity of the as-prepared ZnO nanoparticles. The optical band gap of ZnO NPs was calculated to be 3.48 eV which indicates that ZnO NPs can be used in metal oxide semiconductor-based devices. Further, the nanomaterials were also found to be good inhibitors of bacterial strains at both low and high concentrations of 5–10 mg mL−1.


2020 ◽  
Vol 14 (3) ◽  
pp. 1999-2008
Author(s):  
H. Syed Jahangir ◽  
T. Tamil Kumar ◽  
M. Mary Concelia ◽  
R. Alamelu

Green synthesis nanoparticles were considered as an alternative effective resource instead of chemically engineered metal oxide nanoparticles. Using leaf extracts for green synthesis, essential for the reduction and oxidation process of the metals. Phyllanthus niruri (L.) and Aristolochia indica (L.) leaf extracts were used to synthesize yellowish brown coloured silver (Ag) and white coloured zinc oxide (ZnO) nanoparticles. Synthesized green nanoparticles characterized by different spectroscopic analysis (XRD, XPS, FTIR, PL) and TEM. Characterization results confirmed the particles morphology, size, structure and also their optical and photonic properties. Three different concentrations of Ag and ZnO NPs were analysed against three (gram positive) and five (gram negative) bacteria. Increased levels of green synthesized Ag and ZnO NPs showed increased zone of inhibition than amoxicillin (positive control). Our study proved that the green synthesized Ag and ZnO NPs showed similar unique physical and chemical properties with metal oxide nanoparticles but less toxic while their discharge into the ecosystem.


Sign in / Sign up

Export Citation Format

Share Document