A Numerical Study of the Upper Bound of the Throughput of a Crossbar Switch Utilizing MiMa-Algorithm

Author(s):  
Tasho Tashev ◽  
Vladimir Monov
Author(s):  
James Chapman ◽  
Jin Woo Jang ◽  
Robert M. Strain

AbstractThis article considers a long-outstanding open question regarding the Jacobian determinant for the relativistic Boltzmann equation in the center-of-momentum coordinates. For the Newtonian Boltzmann equation, the center-of-momentum coordinates have played a large role in the study of the Newtonian non-cutoff Boltzmann equation, in particular we mention the widely used cancellation lemma [1]. In this article we calculate specifically the very complicated Jacobian determinant, in ten variables, for the relativistic collision map from the momentum p to the post collisional momentum $$p'$$ p ′ ; specifically we calculate the determinant for $$p\mapsto u = \theta p'+\left( 1-\theta \right) p$$ p ↦ u = θ p ′ + 1 - θ p for $$\theta \in [0,1]$$ θ ∈ [ 0 , 1 ] . Afterwards we give an upper-bound for this determinant that has no singularity in both p and q variables. Next we give an example where we prove that the Jacobian goes to zero in a specific pointwise limit. We further explain the results of our numerical study which shows that the Jacobian determinant has a very large number of distinct points at which it is machine zero. This generalizes the work of Glassey-Strauss (1991) [8] and Guo-Strain (2012) [12]. These conclusions make it difficult to envision a direct relativistic analog of the Newtonian cancellation lemma in the center-of-momentum coordinates.


2014 ◽  
Vol 15 (3) ◽  
pp. 712-732
Author(s):  
Eric Bourgain-Chang

AbstractIn this paper we perform a numerical study of the spectra, eigenstates, and Lyapunov exponents of the skew-shift counterpart to Harper’s equation. This study is motivated by various conjectures on the spectral theory of these ‘pseudo-random’ models, which are reviewed in detail in the initial sections of the paper. The numerics carried out at different scales are within agreement with the conjectures and show a striking difference compared with the spectral features of the Almost Mathieu model. In particular our numerics establish a small upper bound on the gaps in the spectrum (conjectured to be absent).


Author(s):  
Chao-Qiang Geng ◽  
Yan-Ting Hsu ◽  
Jhih-Rong Lu ◽  
Lu Yin

AbstractWe apply the first law of thermodynamics to the apparent horizon of the universe with the power-law corrected and non-extensive Tsallis entropies rather than the Bekenstein–Hawking one. We examine the cosmological properties in the two entropy models by using the CosmoMC package. In particular, the first numerical study for the cosmological observables with the power-law corrected entropy is performed. We also show that the neutrino mass sum has a non-zero central value with a relaxed upper bound in the Tsallis entropy model comparing with that in the $$\Lambda $$ΛCDM one.


1998 ◽  
Vol 77 (2) ◽  
pp. 473-484 ◽  
Author(s):  
M. Sampoli, P. Benassi, R. Dell'Anna,

Sign in / Sign up

Export Citation Format

Share Document