Dynamic Modeling of Planetary Gear Train for Vibration Characteristic Analysis

Author(s):  
Huimin Dong ◽  
Kai Zhang ◽  
Delun Wang ◽  
Yangyang Wu ◽  
Shaoping Bai
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Wuzhong Tan ◽  
Jiangming Wu ◽  
De Ni ◽  
Hongzhi Yan ◽  
Enming Xiang ◽  
...  

New generations of powertrains are using gearboxes with multiple speed-shift designs to improve fuel efficiency. However, transmission controls and calibration are substantially time consuming, specifically during shift processes. To study the dynamic characteristics of a gearbox with a double-planetary gear train and analyze the influence of external excitation and internal parameters on the dynamic response of a system, dynamic modeling and simulation of the transmission system are conducted. Some physical processes are complex and difficult to express via lumped mass modeling. The dynamic model of a double-planetary gearbox is obtained by adopting the bond graph method based on the working principle analysis of the transmission, as well as the kinematic characteristics of the double-planetary gear train. Subsequently, state equations are deduced from the dynamic model of the power transmission system for simplified calculations, which can effectively facilitate the shift process simulation. The basic case of different shift plans and times is originally analyzed, followed by an analysis of the influence of damping, stiffness, and moment of inertia on transmission systems. The analysis results provide references for the structural design, control strategy optimization, and failure diagnostics of this gearbox type.


Author(s):  
Fengxia Lu ◽  
Rupeng Zhu ◽  
Haofei Wang ◽  
Heyun Bao ◽  
Miaomiao Li

A new nonlinear dynamics model of the double helical planetary gear train with 44 degrees of freedom is developed, and the coupling effects of the sliding friction, time-varying meshing stiffness, gear backlashes, axial stagger as well as gear mesh errors, are taken into consideration. The solution of the differential governing equation of motion is solved by variable step-size Runge-Kutta numerical integration method. The influence of tooth friction on the periodic vibration and nonlinear vibration are investigated. The results show that tooth friction makes the system motion become stable by the effects of the periodic attractor under the specific meshing frequency and leads to the frequency delay for the bifurcation behavior and jump phenomenon in the system.


2019 ◽  
pp. 27-30
Author(s):  
Kiril Arnaudov ◽  
Dimitar Petkov Karaivanov

2019 ◽  
pp. 187-204
Author(s):  
Kiril Arnaudov ◽  
Dimitar Petkov Karaivanov

2019 ◽  
pp. 173-180
Author(s):  
Kiril Arnaudov ◽  
Dimitar Petkov Karaivanov

Sign in / Sign up

Export Citation Format

Share Document