Specific Conditions of A I ¯ -Planetary Gear Train

2019 ◽  
pp. 27-30
Author(s):  
Kiril Arnaudov ◽  
Dimitar Petkov Karaivanov
Author(s):  
Fengxia Lu ◽  
Rupeng Zhu ◽  
Haofei Wang ◽  
Heyun Bao ◽  
Miaomiao Li

A new nonlinear dynamics model of the double helical planetary gear train with 44 degrees of freedom is developed, and the coupling effects of the sliding friction, time-varying meshing stiffness, gear backlashes, axial stagger as well as gear mesh errors, are taken into consideration. The solution of the differential governing equation of motion is solved by variable step-size Runge-Kutta numerical integration method. The influence of tooth friction on the periodic vibration and nonlinear vibration are investigated. The results show that tooth friction makes the system motion become stable by the effects of the periodic attractor under the specific meshing frequency and leads to the frequency delay for the bifurcation behavior and jump phenomenon in the system.


2019 ◽  
pp. 187-204
Author(s):  
Kiril Arnaudov ◽  
Dimitar Petkov Karaivanov

2019 ◽  
pp. 173-180
Author(s):  
Kiril Arnaudov ◽  
Dimitar Petkov Karaivanov

2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Zhipeng Tong ◽  
Gaohong Yu ◽  
Xiong Zhao ◽  
Pengfei Liu ◽  
Bingliang Ye

Abstract It has been challenging to design seedling pick-up mechanism based on given key points and trajectories, because it involves dimensional synthesis and rod length optimization. In this paper, the dimensional synthesis of seedling pick-up mechanism with planetary gear train was studied based on the data of given key points and the trajectory of the endpoint of seedling pick-up mechanism. Given the positions and orientations requirements of the five key points, the study first conducted a dimensional synthesis of the linkage size and center of rotation. The next steps were to select a reasonable solution and optimize the data values based on the ideal seedling trajectory. The link motion was driven by the planetary gear train of the two-stage gear. Four pitch curves of noncircular gears were obtained by calculating and distributing the transmission ratio according to the data. For the pitch curve with two convex points, the tooth profile design method of incomplete noncircular gear was applied. The seedling pick-up mechanism was tested by a virtual prototype and a physical prototype designed with the obtained parameter values. The results were consistent with the theoretical design requirements, confirming that the mechanism meets the expected requirements for picking seedlings up. This paper presents a new design method of vegetable pot seedling pick-up mechanism for an automatic vegetable transplanter.


2015 ◽  
Vol 39 (3) ◽  
pp. 431-441 ◽  
Author(s):  
Yi-Chang Wu ◽  
Tze-Cheng Wu

This paper presents embodiment design of 5-speed rear drive hubs for bicycles. A 7-link, 2-degrees of freedom (DOF) compound planetary gear train as the main body of a rear drive hub is introduced. The relationship between the number of coaxial links of a planetary gear train and the number of gear stages that a drive hub can provide with is discussed. By means of kinematic analysis, four speed ratios of the planetary gear train are derived, which represents four forward gears of the rear drive hub. By adding a direct-drive gear, five forward gears can be provided and two feasible clutching sequence tables are synthesized. Manual translational-type gear-shifting mechanisms are further designed to incorporate with the planetary gear train for appropriately controlling the gear stage. The power-flow path at each gear stage is checked to verify the feasibility of the proposed design. Finally, two novel 5-speed bicycle rear drive hubs are presented.


Sign in / Sign up

Export Citation Format

Share Document