scholarly journals A Stochastic Domain Decomposition Method for Time Dependent Mesh Generation

Author(s):  
Alexander Bihlo ◽  
Ronald D. Haynes
2016 ◽  
Vol Volume 23 - 2016 - Special... ◽  
Author(s):  
Rim GUETAT

In this paper, we present a new parallel algorithm for time dependent problems based on coupling parareal with non-overlapping domain decomposition method in order to increase parallelism in time and in space. For this we focus on the iterative methods of parallization in space to solve the interface problem like Neumann-Neumann method. In the new algorithm, the coarse temporel propagator is defined on the global domain and the Neumann-Neumann method is chosen as a fine propagator with a few iterations. We present the rigorous convergence analysis of the new coupled algorithm on bounded time interval. Numerical experiments illustrate the performance of this new algorithm and confirm our analysis. RÉSUMÉ. Dans ce papier, nous présentons un nouvel algorithme parallèle pour les problèmes dé-pendant du temps basé sur le couplage du pararéel avec les méthodes de décomposition de domaine sans recouvrement afin d'augmenter le parallélisme dans le temps et l'espace. Nous nous concen-trons sur les méthodes itératives de parallélisation en espace pour résoudre le problème d'interface par la méthode de Neumann-Neumann. Dans ce nouvel algorithme, le propagateur grossier est dé-finie sur le domaine global et la méthode de Neumann-Neumann est choisi pour le propagateur fin avec quelques itérations. Nous présentons l'analyse rigoureuse de convergence du nouvel algorithme couplé sur un intervalle de temps borné. Des expèriences numériques illustrent les performances de ce nouvel algorithme et confirment notre analyse. Dans ce papier, nous présentons un nouvel algorithme parallèle pour les problèmes dépendantdu temps basé sur le couplage du pararéel avec les méthodes de décomposition de domainesans recouvrement afin d’augmenter le parallélisme dans le temps et l’espace. Nous nous concentronssur les méthodes itératives de parallélisation en espace pour résoudre le problème d’interfacepar la méthode de Neumann-Neumann. Dans ce nouvel algorithme, le propagateur grossier est définiesur le domaine global et la méthode de Neumann-Neumann est choisi pour le propagateur finavec quelques itérations. Nous présentons l’analyse rigoureuse de convergence du nouvel algorithmecouplé sur un intervalle de temps borné. Des expèriences numériques illustrent les performances dece nouvel algorithme et confirment notre analyse.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ran Zhao ◽  
Hua Peng Zhao ◽  
Zai-ping Nie ◽  
Jun Hu

Nonconformal nonoverlapping domain decomposition method (DDM) with mixed basis functions is presented to realize fast integral equation solution of electromagnetic scattering of multiscale objects. The original multiscale objects are decomposed into several closed subdomains. The higher order hierarchical vector basis functions are used in the electrically large smooth subdomains to significantly reduce the number of unknowns, while traditional Rao-Wilton-Glisson basis functions are used for subdomains with tiny structures. A well-posed matrix is successfully derived by the present DDM. Besides, the nonconformal property of DDM allows flexible mesh generation for complicated objects. Numerical results are presented to validate the proposed method and illustrate its advantages.


Sign in / Sign up

Export Citation Format

Share Document