Horizontal Transfers and the New Model of TE-Driven Genome Evolution in Eukaryotes

Author(s):  
Moaine El Baidouri ◽  
Olivier Panaud
2017 ◽  
Vol 114 (23) ◽  
pp. E4602-E4611 ◽  
Author(s):  
Tom A. Williams ◽  
Gergely J. Szöllősi ◽  
Anja Spang ◽  
Peter G. Foster ◽  
Sarah E. Heaps ◽  
...  

A root for the archaeal tree is essential for reconstructing the metabolism and ecology of early cells and for testing hypotheses that propose that the eukaryotic nuclear lineage originated from within the Archaea; however, published studies based on outgroup rooting disagree regarding the position of the archaeal root. Here we constructed a consensus unrooted archaeal topology using protein concatenation and a multigene supertree method based on 3,242 single gene trees, and then rooted this tree using a recently developed model of genome evolution. This model uses evidence from gene duplications, horizontal transfers, and gene losses contained in 31,236 archaeal gene families to identify the most likely root for the tree. Our analyses support the monophyly of DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea), a recently discovered cosmopolitan and genetically diverse lineage, and, in contrast to previous work, place the tree root between DPANN and all other Archaea. The sister group to DPANN comprises the Euryarchaeota and the TACK Archaea, including Lokiarchaeum, which our analyses suggest are monophyletic sister lineages. Metabolic reconstructions on the rooted tree suggest that early Archaea were anaerobes that may have had the ability to reduce CO2 to acetate via the Wood–Ljungdahl pathway. In contrast to proposals suggesting that genome reduction has been the predominant mode of archaeal evolution, our analyses infer a relatively small-genomed archaeal ancestor that subsequently increased in complexity via gene duplication and horizontal gene transfer.


Author(s):  
H. Akabori ◽  
K. Nishiwaki ◽  
K. Yoneta

By improving the predecessor Model HS- 7 electron microscope for the purpose of easier operation, we have recently completed new Model HS-8 electron microscope featuring higher performance and ease of operation.


2005 ◽  
Vol 173 (4S) ◽  
pp. 140-141
Author(s):  
Mariana Lima ◽  
Celso D. Ramos ◽  
Sérgio Q. Brunetto ◽  
Marcelo Lopes de Lima ◽  
Carla R.M. Sansana ◽  
...  

Author(s):  
Thorsten Meiser

Stochastic dependence among cognitive processes can be modeled in different ways, and the family of multinomial processing tree models provides a flexible framework for analyzing stochastic dependence among discrete cognitive states. This article presents a multinomial model of multidimensional source recognition that specifies stochastic dependence by a parameter for the joint retrieval of multiple source attributes together with parameters for stochastically independent retrieval. The new model is equivalent to a previous multinomial model of multidimensional source memory for a subset of the parameter space. An empirical application illustrates the advantages of the new multinomial model of joint source recognition. The new model allows for a direct comparison of joint source retrieval across conditions, it avoids statistical problems due to inflated confidence intervals and does not imply a conceptual imbalance between source dimensions. Model selection criteria that take model complexity into account corroborate the new model of joint source recognition.


1986 ◽  
Vol 31 (2) ◽  
pp. 108-109
Author(s):  
Alexandra G. Kaplan
Keyword(s):  

PsycCRITIQUES ◽  
2004 ◽  
Vol 49 (Supplement 13) ◽  
Author(s):  
Paul E. Priester
Keyword(s):  

1993 ◽  
Vol 38 (4) ◽  
pp. 406-407
Author(s):  
Donald B. Yarbrough ◽  
Monika Schaffner

Sign in / Sign up

Export Citation Format

Share Document