Higher Spin AdS/CFT Correspondence and Quantum Gravity Aspects of AdS/CFT

Author(s):  
Martin Ammon
Keyword(s):  
2015 ◽  
Vol 2015 (10) ◽  
Author(s):  
Rudranil Basu

2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Rudranil Basu ◽  
Augniva Ray

AbstractWe find the exact quantum gravity partition function on the static patch of 3d de Sitter spacetime. We have worked in the Chern Simons formulation of 3d gravity. To obtain a non-perturbative result, we supersymmetrized the Chern Simons action and used the technique of supersymmetric localization. We have obtained an exact non-perturbative result for the spin-2 gravity case. We comment on the divergences present in the theory. We also comment on higher spin gravity theories and analyse the nature of divergences present in such theories.


2014 ◽  
Vol 29 (26) ◽  
pp. 1450147 ◽  
Author(s):  
Shan Hu ◽  
Tianjun Li

We study the radial quantization of the 3dO(N) vector model. We calculate the higher spin charges whose commutation relations give the higher spin algebra. The Fock states of higher spin gravity in AdS4 are realized as the states in the 3d CFT. The dynamical information is encoded in their inner products. This serves as the simplest explicit demonstration of the CFT definition for the quantum gravity.


1996 ◽  
Vol 05 (06) ◽  
pp. 747-762
Author(s):  
K.S. STELLE

A review is given of BRST mechanisms through which theories carrying realisations of nonlinear gauge-algebra representations may also be viewed as realizing embeddings into larger gauge algebras. This process generalizes the familiar non-linear realisations of spontaneously-broken Lie-algebra gauge symmetries to ssupersymmetric and higher-spin chiral quantum gravity models.


Author(s):  
James Lindesay
Keyword(s):  

2020 ◽  
Author(s):  
David Zanders ◽  
Goran Bačić ◽  
Dominique Leckie ◽  
Oluwadamilola Odegbesan ◽  
Jeremy M. Rawson ◽  
...  

Attempted preparation of a chelated Co(II) β-silylamide re-sulted in the unprecedented disproportionation to Co(0) and a spirocyclic cobalt(IV) bis(β-silyldiamide): [Co[(NtBu)2SiMe2]2] (1). Compound 1 exhibits a room temperature magnetic moment of 1.8 B.M and a solid state axial EPR spectrum diagnostic of a rare S = 1/2 configuration. Semicanonical coupled-cluster calculations (DLPNO-CCSD(T)) revealed the doublet state was clearly preferred (–27 kcal/mol) over higher spin configurations for which density functional theory (DFT) showed no energetic preference. Unlike other Co(IV) complexes, 1 had remarkable thermal stability, and was demonstrated to form a stable self-limiting monolayer in initial atomic layer deposition (ALD) surface saturation tests. The ease of synthesis and high-stability make 1 an attractive starting point to begin investigating otherwise inaccessible Co(IV) intermediates and synthesizing new materials.


2019 ◽  
Author(s):  
Vitaly Kuyukov

Many approaches to quantum gravity consider the revision of the space-time geometry and the structure of elementary particles. One of the main candidates is string theory. It is possible that this theory will be able to describe the problem of hierarchy, provided that there is an appropriate Calabi-Yau geometry. In this paper we will proceed from the traditional view on the structure of elementary particles in the usual four-dimensional space-time. The only condition is that quarks and leptons should have a common emerging structure. When a new formula for the mass of the hierarchy is obtained, this structure arises from topological quantum theory and a suitable choice of dimensional units.


2020 ◽  
Author(s):  
Vitaly Kuyukov
Keyword(s):  

Braking effect in quantum gravity


2019 ◽  
Vol 51 (5) ◽  
Author(s):  
S. Ariwahjoedi ◽  
I. Husin ◽  
I. Sebastian ◽  
F. P. Zen

Sign in / Sign up

Export Citation Format

Share Document