perturbative result
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 7)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
pp. 1-24
Author(s):  
Dario Benedetto ◽  
Emanuele Caglioti ◽  
Stefano Rossi

We analyze the analytic Landau damping problem for the Vlasov-HMF equation, by fixing the asymptotic behavior of the solution. We use a new method for this “scattering problem”, closer to the one used for the Cauchy problem. In this way we are able to compare the two results, emphasizing the different influence of the plasma echoes in the two approaches. In particular, we prove a non-perturbative result for the scattering problem.


2021 ◽  
pp. 1-41
Author(s):  
DANIJELA DAMJANOVIĆ ◽  
JAMES TANIS

Abstract In this paper we prove a perturbative result for a class of ${\mathbb Z}^2$ actions on Heisenberg nilmanifolds that have Diophantine properties. Along the way we prove cohomological rigidity and obtain a tame splitting for the cohomology with coefficients in smooth vector fields for such actions.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Gustavo O. Heymans ◽  
Marcus Benghi Pinto

Abstract We apply the optimized perturbation theory (OPT) to resum the perturbative series describing the mass gap of the bidimensional ϕ4 theory in the ℤ2 symmetric phase. Already at NLO (one loop) the method is capable of generating a quite reasonable non-perturbative result for the critical coupling. At order-g7 we obtain gc = 2.779(25) which compares very well with the state of the art N8LO result, gc = 2.807(34). As a novelty we investigate the supercritical region showing that it contains some useful complimentary information that can be used in extrapolations to arbitrarily high orders.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Luca Griguolo ◽  
Jacopo Papalini ◽  
Domenico Seminara

Abstract We study the perturbative series associated to bi-local correlators in Jackiw-Teitelboim (JT) gravity, for positive weight λ of the matter CFT operators. Starting from the known exact expression, derived by CFT and gauge theoretical methods, we reproduce the Schwarzian semiclassical expansion beyond leading order. The computation is done for arbitrary temperature and finite boundary distances, in the case of disk and trumpet topologies. A formula presenting the perturbative result (for λ ∈ ℕ/2) at any given order in terms of generalized Apostol-Bernoulli polynomials is also obtained. The limit of zero temperature is then considered, obtaining a compact expression that allows to discuss the asymptotic behaviour of the perturbative series. Finally we highlight the possibility to express the exact result as particular combinations of Mordell integrals.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Diptarka Das ◽  
Roopayan Ghosh ◽  
Krishnendu Sengupta

Abstract We study the properties of a conformal field theory (CFT) driven periodically with a continuous protocol characterized by a frequency ωD. Such a drive, in contrast to its discrete counterparts (such as square pulses or periodic kicks), does not admit exact analytical solution for the evolution operator U. In this work, we develop a Floquet perturbation theory which provides an analytic, albeit perturbative, result for U that matches exact numerics in the large drive amplitude limit. We find that the drive yields the well-known heating (hyperbolic) and non-heating (elliptic) phases separated by transition lines (parabolic phase boundary). Using this and starting from a primary state of the CFT, we compute the return probability (Pn), equal (Cn) and unequal (Gn) time two-point primary correlators, energy density(En), and the mth Renyi entropy ($$ {S}_n^m $$ S n m ) after n drive cycles. Our results show that below a crossover stroboscopic time scale nc, Pn, En and Gn exhibits universal power law behavior as the transition is approached either from the heating or the non-heating phase; this crossover scale diverges at the transition. We also study the emergent spatial structure of Cn, Gn and En for the continuous protocol and find emergence of spatial divergences of Cn and Gn in both the heating and non-heating phases. We express our results for $$ {S}_n^m $$ S n m and Cn in terms of conformal blocks and provide analytic expressions for these quantities in several limiting cases. Finally we relate our results to those obtained from exact numerics of a driven lattice model.


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Rudranil Basu ◽  
Augniva Ray

AbstractWe find the exact quantum gravity partition function on the static patch of 3d de Sitter spacetime. We have worked in the Chern Simons formulation of 3d gravity. To obtain a non-perturbative result, we supersymmetrized the Chern Simons action and used the technique of supersymmetric localization. We have obtained an exact non-perturbative result for the spin-2 gravity case. We comment on the divergences present in the theory. We also comment on higher spin gravity theories and analyse the nature of divergences present in such theories.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Paolo Maraner ◽  
Jiannis K. Pachos ◽  
Giandomenico Palumbo

AbstractMajorana fermions are a fascinating medium for discovering new phases of matter. However, the standard analytical tools are very limited in probing the non-perturbative aspects of interacting Majoranas in more than one dimensions. Here, we employ the holographic correspondence to determine the specific heat of a two-dimensional interacting gapless Majorana system. To perform our analysis we first describe the interactions in terms of a pseudo-scalar torsion field. We then allow fluctuations in the background curvature thus identifying our model with a (2 + 1)-dimensional Anti-de Sitter (AdS) geometry with torsion. By employing the AdS/CFT correspondence, we show that the interacting model is dual to a (1 + 1)-dimensional conformal field theory (CFT) with central charge that depends on the interaction coupling. This non-perturbative result enables us to determine the effect interactions have in the specific heat of the system at the zero temperature limit.


2018 ◽  
Vol 47 ◽  
pp. 1860091
Author(s):  
V. G. Bornyakov ◽  
V. K. Mitrjushkin ◽  
R. N. Rogalyov

We study numerically the chromoelectric-chromomagnetic asymmetry of the [Formula: see text] gluon condensate as well as the transverse and longitudinal gluon propagators at [Formula: see text] in the Landau-gauge [Formula: see text] lattice gauge theory. We show that the previously found point at which asymmetry changes sign is an artifact of the finite volume effects. We find that with increasing temperature the asymmetry decreases approaching zero value from above in agreement with perturbative result. Instead of the asymmetry we suggest the ratio of the transverse to longitudinal propagator taken at zero momentum as an indicator of the boundary of the postconfinement domain and find it at [Formula: see text].


2015 ◽  
Vol 30 (09) ◽  
pp. 1550043 ◽  
Author(s):  
Uttam Kakade ◽  
Binoy Krishna Patra ◽  
Lata Thakur

We have studied the thermal suppression of the bottomonium states in relativistic heavy-ion collision at LHC energies as function of centrality, rapidity, transverse momentum. First, we address the effects of the nonperturbative confining force and the momentum anisotropy together on heavy quark potential at finite temperature, which are resolved by correcting both the perturbative and nonperturbative terms of the potential at T = 0 in a weakly-anisotropic medium, not its perturbative term alone as usually done in the literature. Second, we model the expansion of medium by the Bjorken hydrodynamics in the presence of both shear and bulk viscosity, followed by an additional pre-equilibrium anisotropic evolution. Finally, we couple them together to quantify the yields of bottomonium production in nucleus–nucleus collisions at LHC energies and found a better agreement with the CMS data. Our estimate of the inclusive ϒ(1S) production indirectly constrains both the uncertainties in isotropization time and the shear-to-entropy density ratio and favors the values as 0.3 fm/c and 0.3 (perturbative result), respectively.


2009 ◽  
Vol 24 (08n09) ◽  
pp. 1717-1720 ◽  
Author(s):  
BRUNO GONÇALVES

The Foldy-Wouthuysen transformation (FWT) is used to separate distinct components of relativistic spinor field, e.g. electron and positron. Usually, the FWT is perturbative, but in some cases there is an involution operator and the transformation can be done exactly. We consider some aspects of an exact FWT and show that, even if the theory does not admit an involution operator, one can use the technique of exact FWT to obtain the conventional perturbative result. Several particular cases can be elaborated as examples.


Sign in / Sign up

Export Citation Format

Share Document