Nucleosynthesis in Spherical Explosion Models of Core-Collapse Supernovae

2017 ◽  
pp. 1753-1770 ◽  
Author(s):  
Hideyuki Umeda ◽  
Takashi Yoshida
2005 ◽  
Vol 192 ◽  
pp. 309-314
Author(s):  
Hideki Madokoro ◽  
Tetsuya Shimizu ◽  
Yuko Motizuki

SummaryWe examine effects of small-scale fluctuations with angle in the neutrino radiation in core-collapse supernova explosions. As the mode number of fluctuations increases, the results approach those of spherical explosion. We conclude that global anisotropy of the neutrino radiation is the most effective mechanism of increasing the explosion energy when the total neutrino luminosity is given.


2020 ◽  
Vol 494 (4) ◽  
pp. 5909-5916
Author(s):  
Noa Kaplan ◽  
Noam Soker

ABSTRACT We build three simple bipolar ejecta models for core-collapse supernovae (CCSNe), as expected when the explosion is driven by strong jets, and show that for an observer located in the equatorial plane of the ejecta, the light curve has a rapid luminosity decline, and even an abrupt drop. In calculating the geometrically modified photosphere we assume that the ejecta has an axisymmetrical structure composed of an equatorial ejecta and faster polar ejecta, and has a uniform effective temperature. At early times the photosphere in the polar ejecta grows faster than the equatorial one, leading to higher luminosity relative to a spherical explosion. The origin of the extra radiated energy is the jets. At later times the optical depth decreases faster in the polar ejecta, and the polar photosphere becomes hidden behind the equatorial ejecta for an observer in the equatorial plane, leading to a rapid luminosity decline. For a model where the jets inflate two low-density polar bubbles, the luminosity decline might be abrupt. This model enables us to fit the abrupt decline in the light curve of SN 2018don.


2016 ◽  
Vol 11 (1) ◽  
pp. 60-65 ◽  
Author(s):  
R.Kh. Bolotnova ◽  
E.F. Gainullina

The spherical explosion propagation process in aqueous foam with the initial water volume content α10=0.0083 corresponding to the experimental conditions is analyzed numerically. The solution method is based on the one-dimensional two-temperature spherically symmetric model for two-phase gas-liquid mixture. The numerical simulation is built by the shock capturing method and movable Lagrangian grids. The amplitude and the width of the initial pressure pulse are found from the amount of experimental explosive energy. The numerical modeling results are compared to the real experiment. It’s shown, that the foam compression in the shock wave leads to the significant decrease in velocity and in amplitude of the shock wave.


Particles ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 7 ◽  
Author(s):  
Ernazar Abdikamalov ◽  
César Huete ◽  
Ayan Nussupbekov ◽  
Shapagat Berdibek

2021 ◽  
Vol 103 (12) ◽  
Author(s):  
Shashank Shalgar ◽  
Irene Tamborra ◽  
Mauricio Bustamante

Sign in / Sign up

Export Citation Format

Share Document