Emissions and Efficiency of Turbocharged Lean-Burn Hydrogen-Supplemented Natural Gas Fueled Engines

Author(s):  
James S. Wallace
Keyword(s):  
2000 ◽  
Vol 35 (4) ◽  
pp. 254-259
Author(s):  
Daisuke Segawa ◽  
Toshikazu Kadota ◽  
Masashi Ohno ◽  
Takeshi Mizobuchi ◽  
Katsumi Kataoka ◽  
...  

2017 ◽  
Vol 35 (11) ◽  
pp. 1077-1082 ◽  
Author(s):  
Haoxin Liu ◽  
Baiwen Zhao ◽  
Yusheng Chen ◽  
Chengjun Ren ◽  
Yaoqiang Chen
Keyword(s):  

1995 ◽  
Author(s):  
K.S. Varde ◽  
N. Patro ◽  
Ken Drouillard

Author(s):  
Daniel M. Wise ◽  
Daniel B. Olsen ◽  
Myoungjin Kim

A wide range of fuels are used in industrial gas fueled engines. Fuels include well-head gas, pipeline natural gas, producer gas, coal gas, digester gas, landfill gas, and liquefied petroleum gas. Many industrial gas fueled engines operate at high power density and at ultra-lean air-fuel ratios for low NOx emissions. Engines operate in a narrow air-fuel ratio band between misfire and knock limits. To utilize this wide range of fuels effectively it is important to understand knock properties. Methane number determination for natural gas blends is traditionally performed with research engines at stoichiometric conditions where the onset of knock is identified through subjective audible indication. The objective of this paper is to develop a process to determine knock onset through direct indication from pressure transducer data at lean operating conditions characteristic of lean-burn industrial gas engines. Validation of the method is provided with methane number determination and comparison of pipeline natural gas. A Waukesha F2 Cooperative Fuel Research (CFR) engine is modified to incorporate piezoelectric pressure transducers at the cylinder head and conversion from natural aspiration to boosted intake and variable exhaust back pressures (to simulate turbocharger operation). The new pressure sensors enable Fast Fourier Transform calculation of pressure data to calculate amplitude at characteristic knock frequency.


2021 ◽  
pp. 146808742110050
Author(s):  
Enrica Malfi ◽  
Vincenzo De Bellis ◽  
Fabio Bozza ◽  
Alberto Cafari ◽  
Gennaro Caputo ◽  
...  

The adoption of lean-burn concepts for internal combustion engines working with a homogenous air/fuel charge is under development as a path to simultaneously improve thermal efficiency, fuel consumption, nitric oxides, and carbon monoxide emissions. This technology may lead to a relevant emission of unburned hydrocarbons (uHC) compared to a stoichiometric engine. The uHC sources are various and the relative importance varies according to fuel characteristics, engine operating point, and some geometrical details of the combustion chamber. This concern becomes even more relevant in the case of engines supplied with natural gas since the methane has a global warming potential much greater than the other major pollutant emissions. In this work, a simulation model describing the main mechanisms for uHC formation is proposed. The model describes uHC production from crevices and flame wall quenching, also considering the post-oxidation. The uHC model is implemented in commercial software (GT-Power) under the form of “user routine”. It is validated with reference to two large bore engines, whose bores are 31 and 46 cm (engines named accordingly W31 and W46). Both engines are fueled with natural gas and operated with lean mixtures (λ > 2), but with different ignition modalities (pre-chamber device or dual fuel mode). The engines under study are preliminarily schematized in the 1D simulation tool. The consistency of 1D engine schematizations is verified against the experimental data of BMEP, air flow rate, and turbocharger rotational speed over a load sweep. Then, the uHC model is validated against the engine-out measurements. The averaged uHC predictions highlight an average error of 7% and 10 % for W31 and W46 engines, respectively. The uHC model reliability is evidenced by the lack of need for a case-dependent adjustment of its tuning constants, also in presence of relevant variations of both engine load and ring pack design.


Sign in / Sign up

Export Citation Format

Share Document