scholarly journals Inference of Hidden Structures in Complex Physical Systems by Multi-scale Clustering

Author(s):  
Z. Nussinov ◽  
P. Ronhovde ◽  
Dandan Hu ◽  
S. Chakrabarty ◽  
Bo Sun ◽  
...  
Keyword(s):  
2017 ◽  
Vol 86 ◽  
pp. 52-69 ◽  
Author(s):  
Olivia Penas ◽  
Régis Plateaux ◽  
Stanislao Patalano ◽  
Moncef Hammadi

2020 ◽  
Author(s):  
Jun Zhang ◽  
Yaokun Lei ◽  
Yi Isaac Yang ◽  
Yi Qin Gao

Molecular simulations are widely applied in the study of chemical and bio-physical systems. However, the<br>accessible timescales of atomistic simulations are limited, and extracting equilibrium properties of systems<br>containing rare events remains challenging. Two distinct strategies are usually adopted in this regard: either<br>sticking to the atomistic level and performing enhanced sampling, or trading details for speed by leveraging<br>coarse-grained models. Although both strategies are promising, either of them, if adopted individually,<br>exhibits severe limitations. In this paper we propose a machine-learning approach to ally both strategies so<br>that simulations on different scales can benefit mutually from their cross-talks: Accurate coarse-grained (CG)<br>models can be inferred from the fine-grained (FG) simulations through deep generative learning; In turn, FG<br>simulations can be boosted by the guidance of CG models via deep reinforcement learning. Our method<br>defines a variational and adaptive training objective which allows end-to-end training of parametric<br>molecular models using deep neural networks. Through multiple experiments, we show that our method is<br>efficient and flexible, and performs well on challenging chemical and bio-molecular systems. <br>


Author(s):  
Jun Zhang ◽  
Yaokun Lei ◽  
Yi Isaac Yang ◽  
Yi Qin Gao

Molecular simulations are widely applied in the study of chemical and bio-physical systems. However, the<br>accessible timescales of atomistic simulations are limited, and extracting equilibrium properties of systems<br>containing rare events remains challenging. Two distinct strategies are usually adopted in this regard: either<br>sticking to the atomistic level and performing enhanced sampling, or trading details for speed by leveraging<br>coarse-grained models. Although both strategies are promising, either of them, if adopted individually,<br>exhibits severe limitations. In this paper we propose a machine-learning approach to ally both strategies so<br>that simulations on different scales can benefit mutually from their cross-talks: Accurate coarse-grained (CG)<br>models can be inferred from the fine-grained (FG) simulations through deep generative learning; In turn, FG<br>simulations can be boosted by the guidance of CG models via deep reinforcement learning. Our method<br>defines a variational and adaptive training objective which allows end-to-end training of parametric<br>molecular models using deep neural networks. Through multiple experiments, we show that our method is<br>efficient and flexible, and performs well on challenging chemical and bio-molecular systems. <br>


2020 ◽  
Author(s):  
Jun Zhang ◽  
Yaokun Lei ◽  
Yi Isaac Yang ◽  
Yi Qin Gao

Molecular simulations are widely applied in the study of chemical and bio-physical systems. However, the<br>accessible timescales of atomistic simulations are limited, and extracting equilibrium properties of systems<br>containing rare events remains challenging. Two distinct strategies are usually adopted in this regard: either<br>sticking to the atomistic level and performing enhanced sampling, or trading details for speed by leveraging<br>coarse-grained models. Although both strategies are promising, either of them, if adopted individually,<br>exhibits severe limitations. In this paper we propose a machine-learning approach to ally both strategies so<br>that simulations on different scales can benefit mutually from their cross-talks: Accurate coarse-grained (CG)<br>models can be inferred from the fine-grained (FG) simulations through deep generative learning; In turn, FG<br>simulations can be boosted by the guidance of CG models via deep reinforcement learning. Our method<br>defines a variational and adaptive training objective which allows end-to-end training of parametric<br>molecular models using deep neural networks. Through multiple experiments, we show that our method is<br>efficient and flexible, and performs well on challenging chemical and bio-molecular systems. <br>


Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.


2016 ◽  
Vol 136 (8) ◽  
pp. 1078-1084
Author(s):  
Shoichi Takei ◽  
Shuichi Akizuki ◽  
Manabu Hashimoto

Sign in / Sign up

Export Citation Format

Share Document