Emerging Cyber-Physical Systems : An Overview

Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ye Yuan ◽  
Xiuchuan Tang ◽  
Wei Zhou ◽  
Wei Pan ◽  
Xiuting Li ◽  
...  

Abstract Cyber-physical systems embed software into the physical world. They appear in a wide range of applications such as smart grids, robotics, and intelligent manufacturing. Cyber-physical systems have proved resistant to modeling due to their intrinsic complexity arising from the combination of physical and cyber components and the interaction between them. This study proposes a general framework for discovering cyber-physical systems directly from data. The framework involves the identification of physical systems as well as the inference of transition logics. It has been applied successfully to a number of real-world examples. The novel framework seeks to understand the underlying mechanism of cyber-physical systems as well as make predictions concerning their state trajectories based on the discovered models. Such information has been proven essential for the assessment of the performance of cyber-physical systems; it can potentially help debug in the implementation procedure and guide the redesign to achieve the required performance.


10.29007/z1sj ◽  
2018 ◽  
Author(s):  
Gabriella Fiore

In Cyber-Physical Systems (CPSs), physical processes, computational resources and communi- cation capabilities are tightly interconnected. Traditionally, the physical components of a CPS are described by means of differential or difference equations, while the cyber components are modeled by means of discrete dynamics. Therefore, hybrid systems, that are heterogeneous dynamical sys- tems characterized by the interaction of continuous and discrete dynamics, are a powerful modeling framework to deal with CPSs. Motivated by the great importance of security issues for CPSs, we characterize the observability and diagnosability properties for hybrid systems in the general case where the available information may be corrupted by an external attacker. Then, as CPSs are found in a wide range of applications, we demonstrate how to estimate the continuous state by simulating two scenarios: the control of a Direct Current (DC) Microgrid, and the control of a network of Unmanned Aerial Vehicles (UAVs) cooperatively transporting a payload.


Author(s):  
Ms. Keerti Dixit

Abstract: Cyber-physical systems are the systems that combine the physical world with the world of information processing. CPS involves interaction between heterogeneous components that include electronic chips, software systems, sensors and actuators. It makes the CPS vulnerable to attacks. How to deal with the attacks in CPSs has become a research hotspot. In this paper we have study the Architecture of CPS and various security threats at each layer of the archicture of CPS. We have also developed attack taxonomy for CPS. Keywords: Cyber Physical System, Threat, Attack


2021 ◽  
Vol 21 (2) ◽  
pp. 1-25
Author(s):  
Pin Ni ◽  
Yuming Li ◽  
Gangmin Li ◽  
Victor Chang

Cyber-Physical Systems (CPS), as a multi-dimensional complex system that connects the physical world and the cyber world, has a strong demand for processing large amounts of heterogeneous data. These tasks also include Natural Language Inference (NLI) tasks based on text from different sources. However, the current research on natural language processing in CPS does not involve exploration in this field. Therefore, this study proposes a Siamese Network structure that combines Stacked Residual Long Short-Term Memory (bidirectional) with the Attention mechanism and Capsule Network for the NLI module in CPS, which is used to infer the relationship between text/language data from different sources. This model is mainly used to implement NLI tasks and conduct a detailed evaluation in three main NLI benchmarks as the basic semantic understanding module in CPS. Comparative experiments prove that the proposed method achieves competitive performance, has a certain generalization ability, and can balance the performance and the number of trained parameters.


2021 ◽  
Vol 10 (1) ◽  
pp. 18
Author(s):  
Quentin Cabanes ◽  
Benaoumeur Senouci ◽  
Amar Ramdane-Cherif

Cyber-Physical Systems (CPSs) are a mature research technology topic that deals with Artificial Intelligence (AI) and Embedded Systems (ES). They interact with the physical world via sensors/actuators to solve problems in several applications (robotics, transportation, health, etc.). These CPSs deal with data analysis, which need powerful algorithms combined with robust hardware architectures. On one hand, Deep Learning (DL) is proposed as the main solution algorithm. On the other hand, the standard design and prototyping methodologies for ES are not adapted to modern DL-based CPS. In this paper, we investigate AI design for CPS around embedded DL. The main contribution of this work is threefold: (1) We define an embedded DL methodology based on a Multi-CPU/FPGA platform. (2) We propose a new hardware design architecture of a Neural Network Processor (NNP) for DL algorithms. The computation time of a feed forward sequence is estimated to 23 ns for each parameter. (3) We validate the proposed methodology and the DL-based NNP using a smart LIDAR application use-case. The input of our NNP is a voxel grid hardware computed from 3D point cloud. Finally, the results show that our NNP is able to process Dense Neural Network (DNN) architecture without bias.


2021 ◽  
Vol 82 (3) ◽  
pp. 12-17
Author(s):  
Bohdan Stadnyk ◽  
◽  
Vasyl Yatsuk ◽  
Mykola Mykyjchuk ◽  
Svyatoslav Yatsyshyn ◽  
...  

The analysis of the concept of Open-Science Space is carried out. The existence of ways to achieve reproducibility and traceability of research results performed by a group of worldwide situated Cyber-physical system operators/supervisors is shown. Ways to ensure the efficient operation of Cyber-physical systems as complex technological nondemountable objects with high requirements for metrological characteristics have been studied. To develop the scattered cyberphysical systems, the portable stable-in-time code-controlled measures of physical quantities have been studied. They have to be metrologically confirmed in the laboratory before the delivery to the site of the measuring subsystem for its calibration.


2021 ◽  
Author(s):  
Balaban Beatrix-May ◽  
Sacala Ioan Stefan ◽  
Petrescu-Nita Alina-Claudia ◽  
Pop Florin ◽  
Udrea Andreea

Author(s):  
Arif Sari ◽  
Joshua Chibuike Sopuru

Cyber-physical systems, also known as CPS, have come to stay. There is no doubt, CPS would one day outnumber humans in industries. How do we evaluate the adaptation progress of these systems considering changing environmental conditions? A failed implementation of a CPS can result to a loss. Since CPSs are designed to automate industrial activities, which are centred on the use of several technologies, collaboration with humans may sometimes be inevitable. CPSs are needed to automate several processes and thus help firms compete favourably within an industry. This chapter focuses on the adaptation of CPS in diverse work environment. Considering the ecosystem of the CPS, the authors present a Bayesian model evaluating the progress of adaptation of a CPS given some known conditions.


Author(s):  
Vijey Thayananthan ◽  
Javad Yazdani

The main aim of this strategic research proposal is to develop a model of secure transportation system using efficient CPS which not only reduce the unnecessary accident rates but also increase safety system that enhances the livability of smart cities and Industry 4.0. Although the main focus is efficient security solutions, dynamic and intelligent approaches of the future security solutions will be able to detect the evolving threats and cyberattacks during the data or signal transmission between the users and service providers.


Sign in / Sign up

Export Citation Format

Share Document