Improvement of Navigation Conditions Using Model Predictive Control - The Cuinchy-Fontinettes Case Study

Author(s):  
Klaudia Horváth ◽  
Eric Duviella ◽  
Lala Rajaoarisoa ◽  
Rudy R. Negenborn ◽  
Karine Chuquet
2020 ◽  
Vol 53 (2) ◽  
pp. 15771-15776
Author(s):  
Murali Padmanabha ◽  
Lukas Beckenbach ◽  
Stefan Streif

2011 ◽  
Vol 44 (1) ◽  
pp. 9266-9271
Author(s):  
Nan Yang ◽  
Dewei Li ◽  
Jun Zhang ◽  
Yugeng Xi

2010 ◽  
Vol 64 (3) ◽  
Author(s):  
Michal Kvasnica ◽  
Martin Herceg ◽  
Ľuboš Čirka ◽  
Miroslav Fikar

AbstractThis paper presents a case study of model predictive control (MPC) applied to a continuous stirred tank reactor (CSTR). It is proposed to approximate nonlinear behavior of a plant by several local linear models, enabling a piecewise affine (PWA) description of the model used to predict and optimize future evolution of the reactor behavior. Main advantage of the PWA model over traditional approaches based on single linearization is a significant increase of model accuracy which leads to a better control quality. It is also illustrated that, by adopting the PWA modeling framework, MPC strategy can be implemented using significantly less computational power compared to nonlinear MPC setups.


Author(s):  
Keji Chen ◽  
Xiaofei Pei ◽  
Daoyuan Sun ◽  
Zhenfu Chen ◽  
Xuexun Guo ◽  
...  

Leveraging the advancements in sensor and mapping technologies, the collision-free autonomous vehicle becomes possible in the future. In this article, a case study of collision avoidance by active steering control is presented and verified by a driver-in-the-loop platform. The proposed control system integrates a risk assessment algorithm and a hierarchical model predictive control approach to ensure a safe driving. First, a fuzzy logic is used to estimate the potential conflict. Besides, a nonlinear model predictive control is introduced in the upper layer of the model predictive controller to generate a collision-free trajectory. Furthermore, the lower layer determines the optimal steering angle based on the linear time-variant model predictive control to follow the replanning path. The performance of the controller has been evaluated in the real-time driver-in-the-loop test. The results show that the autonomous vehicle is able to avoid the collision with the surrounding vehicle that is operated by a real driver, and the performance of collision avoidance is improved by means of the risk assessment.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 29767-29814 ◽  
Author(s):  
Shafiqur Rehman ◽  
Habib Ur Rahman Habib ◽  
Shaorong Wang ◽  
Mahmut Sami Buker ◽  
Luai M. Alhems ◽  
...  

Author(s):  
Jiechao Liu ◽  
Paramsothy Jayakumar ◽  
James L. Overholt ◽  
Jeffrey L. Stein ◽  
Tulga Ersal

Unmanned ground vehicles (UGVs) are gaining importance and finding increased utility in both military and commercial applications. Although earlier UGV platforms were typically exclusively small ground robots, recent efforts started targeting passenger vehicle and larger size platforms. Due to their size and speed, these platforms have significantly different dynamics than small robots, and therefore the existing hazard avoidance algorithms, which were developed for small robots, may not deliver the desired performance. The goal of this paper is to present the first steps towards a model predictive control (MPC) based hazard avoidance algorithm for large UGVs that accounts for the vehicle dynamics through high fidelity models and uses only local information about the environment as provided by the onboard sensors. Specifically, the paper presents the MPC formulation for hazard avoidance using a light detection and ranging (LIDAR) sensor and applies it to a case study to investigate the impact of model fidelity on the performance of the algorithm, where performance is measured mainly by the time to reach the target point. Towards this end, the case study compares a 2 degrees-of-freedom (DoF) vehicle dynamics representation to a 14 DoF representation as the model used in MPC. The results show that the 2 DoF model can perform comparable to the 14 DoF model if the safe steering range is established using the 14 DoF model rather than the 2 DoF model itself. The conclusion is that high fidelity models are needed to push autonomous vehicles to their limits to increase their performance, but simulating the high fidelity models online within the MPC may not be as critical as using them to establish the safe control input limits.


Sign in / Sign up

Export Citation Format

Share Document