The Role of Model Fidelity in Model Predictive Control Based Hazard Avoidance in Unmanned Ground Vehicles Using LIDAR Sensors

Author(s):  
Jiechao Liu ◽  
Paramsothy Jayakumar ◽  
James L. Overholt ◽  
Jeffrey L. Stein ◽  
Tulga Ersal

Unmanned ground vehicles (UGVs) are gaining importance and finding increased utility in both military and commercial applications. Although earlier UGV platforms were typically exclusively small ground robots, recent efforts started targeting passenger vehicle and larger size platforms. Due to their size and speed, these platforms have significantly different dynamics than small robots, and therefore the existing hazard avoidance algorithms, which were developed for small robots, may not deliver the desired performance. The goal of this paper is to present the first steps towards a model predictive control (MPC) based hazard avoidance algorithm for large UGVs that accounts for the vehicle dynamics through high fidelity models and uses only local information about the environment as provided by the onboard sensors. Specifically, the paper presents the MPC formulation for hazard avoidance using a light detection and ranging (LIDAR) sensor and applies it to a case study to investigate the impact of model fidelity on the performance of the algorithm, where performance is measured mainly by the time to reach the target point. Towards this end, the case study compares a 2 degrees-of-freedom (DoF) vehicle dynamics representation to a 14 DoF representation as the model used in MPC. The results show that the 2 DoF model can perform comparable to the 14 DoF model if the safe steering range is established using the 14 DoF model rather than the 2 DoF model itself. The conclusion is that high fidelity models are needed to push autonomous vehicles to their limits to increase their performance, but simulating the high fidelity models online within the MPC may not be as critical as using them to establish the safe control input limits.

2020 ◽  
Vol 53 (2) ◽  
pp. 15771-15776
Author(s):  
Murali Padmanabha ◽  
Lukas Beckenbach ◽  
Stefan Streif

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Shuyou Yu ◽  
Matthias Hirche ◽  
Yanjun Huang ◽  
Hong Chen ◽  
Frank Allgöwer

AbstractThis paper reviews model predictive control (MPC) and its wide applications to both single and multiple autonomous ground vehicles (AGVs). On one hand, MPC is a well-established optimal control method, which uses the predicted future information to optimize the control actions while explicitly considering constraints. On the other hand, AGVs are able to make forecasts and adapt their decisions in uncertain environments. Therefore, because of the nature of MPC and the requirements of AGVs, it is intuitive to apply MPC algorithms to AGVs. AGVs are interesting not only for considering them alone, which requires centralized control approaches, but also as groups of AGVs that interact and communicate with each other and have their own controller onboard. This calls for distributed control solutions. First, a short introduction into the basic theoretical background of centralized and distributed MPC is given. Then, it comprehensively reviews MPC applications for both single and multiple AGVs. Finally, the paper highlights existing issues and future research directions, which will promote the development of MPC schemes with high performance in AGVs.


2011 ◽  
Vol 44 (1) ◽  
pp. 9266-9271
Author(s):  
Nan Yang ◽  
Dewei Li ◽  
Jun Zhang ◽  
Yugeng Xi

2021 ◽  
Author(s):  
Giorgio Riva ◽  
Luca Mozzarelli ◽  
Matteo Corno ◽  
Simone Formentin ◽  
Sergio M. Savaresi

Abstract State of the art vehicle dynamics control systems do not exploit tire road forces information, even though the vehicle behaviour is ultimately determined by the tire road interaction. Recent technological improvements allow to accurately measure and estimate these variables, making it possible to introduce such knowledge inside a control system. In this paper, a vehicle dynamics control architecture based on a direct longitudinal tire force feedback is proposed. The scheme is made by a nested architecture composed by an outer Model Predictive Control algorithm, written in spatial coordinates, and an inner longitudinal force feedback controller. The latter is composed by four classical Proportional-Integral controllers in anti-windup configuration, endowed with a suitably designed gain switching logic to cope with possible unfeasible references provided by the outer loop, avoiding instability. The proposed scheme is tested in simulation in a challenging scenario where the tracking of a spiral path on a slippery surface and the timing performance are handled simultaneously by the controller. The performance is compared with that of an inner slip-based controller, sharing the same outer Model Predictive Control loop. The results show comparable performance in presence of unfeasible force references, while higher robustness is achieved with respect to friction curve uncertainties.


2010 ◽  
Vol 64 (3) ◽  
Author(s):  
Michal Kvasnica ◽  
Martin Herceg ◽  
Ľuboš Čirka ◽  
Miroslav Fikar

AbstractThis paper presents a case study of model predictive control (MPC) applied to a continuous stirred tank reactor (CSTR). It is proposed to approximate nonlinear behavior of a plant by several local linear models, enabling a piecewise affine (PWA) description of the model used to predict and optimize future evolution of the reactor behavior. Main advantage of the PWA model over traditional approaches based on single linearization is a significant increase of model accuracy which leads to a better control quality. It is also illustrated that, by adopting the PWA modeling framework, MPC strategy can be implemented using significantly less computational power compared to nonlinear MPC setups.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 128233-128249
Author(s):  
Mohammad Rokonuzzaman ◽  
Navid Mohajer ◽  
Saeid Nahavandi ◽  
Shady Mohamed

Sign in / Sign up

Export Citation Format

Share Document