Proof-Search in Natural Deduction Calculus for Classical Propositional Logic

Author(s):  
Mauro Ferrari ◽  
Camillo Fiorentini
Axioms ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 118 ◽  
Author(s):  
Valentin Goranko

Hybrid deduction–refutation systems are deductive systems intended to derive both valid and non-valid, i.e., semantically refutable, formulae of a given logical system, by employing together separate derivability operators for each of these and combining ‘hybrid derivation rules’ that involve both deduction and refutation. The goal of this paper is to develop a basic theory and ‘meta-proof’ theory of hybrid deduction–refutation systems. I then illustrate the concept on a hybrid derivation system of natural deduction for classical propositional logic, for which I show soundness and completeness for both deductions and refutations.


2010 ◽  
Vol 3 (2) ◽  
pp. 175-227 ◽  
Author(s):  
PETER MILNE

Various natural deduction formulations of classical, minimal, intuitionist, and intermediate propositional and first-order logics are presented and investigated with respect to satisfaction of the separation and subformula properties. The technique employed is, for the most part, semantic, based on general versions of the Lindenbaum and Lindenbaum–Henkin constructions. Careful attention is paid (i) to which properties of theories result in the presence of which rules of inference, and (ii) to restrictions on the sets of formulas to which the rules may be employed, restrictions determined by the formulas occurring as premises and conclusion of the invalid inference for which a counterexample is to be constructed. We obtain an elegant formulation of classical propositional logic with the subformula property and a singularly inelegant formulation of classical first-order logic with the subformula property, the latter, unfortunately, not a product of the strategy otherwise used throughout the article. Along the way, we arrive at an optimal strengthening of the subformula results for classical first-order logic obtained as consequences of normalization theorems by Dag Prawitz and Gunnar Stålmarck.


2018 ◽  
Vol 13 (3) ◽  
pp. 509-540 ◽  
Author(s):  
MINGHUI MA ◽  
AHTI-VEIKKO PIETARINEN

AbstractThis article investigates Charles Peirce’s development of logical calculi for classical propositional logic in 1880–1896. Peirce’s 1880 work on the algebra of logic resulted in a successful calculus for Boolean algebra. This calculus, denoted byPC, is here presented as a sequent calculus and not as a natural deduction system. It is shown that Peirce’s aim was to presentPCas a sequent calculus. The law of distributivity, which Peirce states in 1880, is proved using Peirce’s Rule, which is a residuation, inPC. The transitional systems of the algebra of the copula that Peirce develops since 1880 paved the way to the 1896 graphical system of the alpha graphs. It is shown how the rules of the alpha system reinterpret Boolean algebras, answering Peirce’s statement that logical graphs supply a new system of fundamental assumptions to logical algebra. A proof-theoretic analysis is given for the connection betweenPCand the alpha system.


Author(s):  
Katsumi Sasaki

In the natural deduction system for classical propositional logic given by G. Gentzen, there are some inference rules with assumptions discharged by the rule. D. Prawitz calls such inference rules improper, and others proper. Improper inference rules are more complicated and are often harder to understand than the proper ones. In the present paper, we distinguish between proper and improper derivations by using sequent systems. Specifically, we introduce a sequent system \(\vdash_{\bf Sc}\) for classical propositional logic with only structural rules, and prove that \(\vdash_{\bf Sc}\) does not allow improper derivations in general. For instance, the sequent \(\Rightarrow p \to q\) cannot be derived from the sequent \(p \Rightarrow q\) in \(\vdash_{\bf Sc}\). In order to prove the failure of improper derivations, we modify the usual notion of truth valuation, and using the modified valuation, we prove the completeness of \(\vdash_{\bf Sc}\). We also consider whether an improper derivation can be described generally by using \(\vdash_{\bf Sc}\).


Axioms ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 115 ◽  
Author(s):  
Joanna Golińska-Pilarek ◽  
Magdalena Welle

We study deduction systems for the weakest, extensional and two-valued non-Fregean propositional logic SCI . The language of SCI is obtained by expanding the language of classical propositional logic with a new binary connective ≡ that expresses the identity of two statements; that is, it connects two statements and forms a new one, which is true whenever the semantic correlates of the arguments are the same. On the formal side, SCI is an extension of classical propositional logic with axioms characterizing the identity connective, postulating that identity must be an equivalence and obey an extensionality principle. First, we present and discuss two types of systems for SCI known from the literature, namely sequent calculus and a dual tableau-like system. Then, we present a new dual tableau system for SCI and prove its soundness and completeness. Finally, we discuss and compare the systems presented in the paper.


2010 ◽  
Vol 3 (1) ◽  
pp. 41-70 ◽  
Author(s):  
ROGER D. MADDUX

Sound and complete semantics for classical propositional logic can be obtained by interpreting sentences as sets. Replacing sets with commuting dense binary relations produces an interpretation that turns out to be sound but not complete for R. Adding transitivity yields sound and complete semantics for RM, because all normal Sugihara matrices are representable as algebras of binary relations.


2019 ◽  
Vol 48 (2) ◽  
pp. 99-116
Author(s):  
Dorota Leszczyńska-Jasion ◽  
Yaroslav Petrukhin ◽  
Vasilyi Shangin

The goal of this paper is to propose correspondence analysis as a technique for generating the so-called erotetic (i.e. pertaining to the logic of questions) calculi which constitute the method of Socratic proofs by Andrzej Wiśniewski. As we explain in the paper, in order to successfully design an erotetic calculus one needs invertible sequent-calculus-style rules. For this reason, the proposed correspondence analysis resulting in invertible rules can constitute a new foundation for the method of Socratic proofs. Correspondence analysis is Kooi and Tamminga's technique for designing proof systems. In this paper it is used to consider sequent calculi with non-branching (the only exception being the rule of cut), invertible rules for the negation fragment of classical propositional logic and its extensions by binary Boolean functions.


Sign in / Sign up

Export Citation Format

Share Document