To evaluate the relative influence of coefficient of friction on the motion of a golf ball (speed and roll) during a golf putt

Author(s):  
Iwan Griffiths ◽  
Rory Mckenzie ◽  
Hywel Stredwick ◽  
Paul Hurrion
2011 ◽  
Vol 2011 (0) ◽  
pp. 435-440
Author(s):  
Tetsuyuki HONGO ◽  
Yoshio IWATA ◽  
Hiroshi SAEGUSA ◽  
Toshihiko KOMATSUZAKI

2018 ◽  
Vol 16 (1) ◽  
pp. 14
Author(s):  
Zulfahmi Zulfahmi

A golf course with obstacles in the forms of water obstacle and lateral water obstacle marked with the stakes which are called golf course obstacle stake in this study. This study focused on the design and fabrication of the golf course obstacle stake with a solid cylindrical geometry using EFB fiber-reinforced polymeric foam composite materials. To obtain the EFB fiber which is free from fat content and other elements, EFB  is soaked in the water with 1% (of the watre total volume) NaOH. The model of the mould designed is permanent mould that can be used for the further refabrication process. The mould was designed based on resin-compound paste materials with talc powder plus E-glass fiber to make the mould strong. The composition of polimeric foam materials comprised unsaturated resin Bqtn-Ex 157 (70%), blowing agent (10%), fiber (10%), and catalyst (10%).  The process of casting the polimeric foam composit materials into the mould cavity should be at vertical casting position, accurate interval time of material stirring, and periodical casting. To find out the strength value of the golf course obstacle stake product, a model was made and simulated by using the software of Ansys workbench 14.0, an impact loading was given at the height of 400 mm and 460 mm with the variation of golf ball speed (USGA standard) v = 18 m/s, v =35 m/s, v = 66.2 m/s, v = 70 m/s, and v = 78.2 m/s. The clarification showed that the biggest dynamic explicit loading impact of Fmax = 142.5 N at the height of 460 mm with the maximum golf ball speed of 78.2 m/s did not experience the hysteresis effect and inertia effect. The   largest deformation area occured at the golf ball speed v = 66.2 mm/s, that is 18.029 mm (time: 2.5514e-004) was only concentrated around the sectional area of contact point of impact, meaning that the golf course obstacle stakes made of EFB fiber-reinforced polymeric foam materials have the geometric functional strength that are able to absorb the energy of golf ball impact. Keywords: Composite, Polymeric Foam, EFB Fiber, Tension Distribution, Ansys Workbench 14.0


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 47
Author(s):  
Behzad Danaei ◽  
William McNally ◽  
Erik Henrikson ◽  
John McPhee

In this paper, two simple and physically meaningful adjustments were made to a momentum-based clubhead-ball impact model to predict golf ball launch conditions with better accuracy. These adjustments were motivated by two shortcomings of the momentum-based impact model, namely the absence of shaft effects and golf ball deformation. Kinematic data from a golf impact motion capture experiment was used to empirically determine the parameter adjustments that minimized the ball speed and spin errors. It was found that the original model’s ball speed deficiency could be corrected by adding less than 3 g to the clubhead mass, and the amount of added mass correlated with the mass of the shaft. Additionally, the original model’s backspin and sidespin errors were significantly reduced by making a slight adjustment to the golf ball’s center of mass position relative to the impact location. Specifically, moving the golf ball center of mass approximately 0.5 mm downward and 0.07 mm towards the heel reduced the mean backspin and sidespin errors by approximately 85% each.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 27
Author(s):  
Erik Henrikson ◽  
Paul Wood ◽  
Chris Broadie ◽  
Tom Nuttall

A thorough understanding of how the delivered face angle and club path of a golf club influences the initial launch direction of a golf ball can play a significant role in the design of various club types as well as help players and coaches better understand performance in the field. A theoretical model based on a Hertzian impact formulation with the inclusion of tangential compliance via Coulomb friction is compared to empirical results. This comparison demonstrates that the initial launch direction of a golf ball for a given club path and face angle can be sufficiently predicted by the theoretical model, providing insights into the mechanisms leading to different launch direction percentages relative to face angle for various club types. Additionally, the relationship between launch direction and the coefficient of friction is explored for various angles of incidence.


2012 ◽  
Vol 40 (2) ◽  
pp. 124-150
Author(s):  
Klaus Wiese ◽  
Thiemo M. Kessel ◽  
Reinhard Mundl ◽  
Burkhard Wies

ABSTRACT The presented investigation is motivated by the need for performance improvement in winter tires, based on the idea of innovative “functional” surfaces. Current tread design features focus on macroscopic length scales. The potential of microscopic surface effects for friction on wintery roads has not been considered extensively yet. We limit our considerations to length scales for which rubber is rough, in contrast to a perfectly smooth ice surface. Therefore we assume that the only source of frictional forces is the viscosity of a sheared intermediate thin liquid layer of melted ice. Rubber hysteresis and adhesion effects are considered to be negligible. The height of the liquid layer is driven by an equilibrium between the heat built up by viscous friction, energy consumption for phase transition between ice and water, and heat flow into the cold underlying ice. In addition, the microscopic “squeeze-out” phenomena of melted water resulting from rubber asperities are also taken into consideration. The size and microscopic real contact area of these asperities are derived from roughness parameters of the free rubber surface using Greenwood-Williamson contact theory and compared with the measured real contact area. The derived one-dimensional differential equation for the height of an averaged liquid layer is solved for stationary sliding by a piecewise analytical approximation. The frictional shear forces are deduced and integrated over the whole macroscopic contact area to result in a global coefficient of friction. The boundary condition at the leading edge of the contact area is prescribed by the height of a “quasi-liquid layer,” which already exists on the “free” ice surface. It turns out that this approach meets the measured coefficient of friction in the laboratory. More precisely, the calculated dependencies of the friction coefficient on ice temperature, sliding speed, and contact pressure are confirmed by measurements of a simple rubber block sample on artificial ice in the laboratory.


Alloy Digest ◽  
2013 ◽  
Vol 62 (6) ◽  

Abstract ToughMet 2 CX is a Cu-9Ni-6Sn alloy that combines low coefficient of friction with wear resistance. ToughMet alloys are a line of spinodal hardened Cu-Ni antigalling alloys for bearings capable of performing with a variety of shafting materials and lubricants. The alloys combine a high lubricity with wear resistance in these severe loading conditions. ToughMet 2CX in the cast and spinodally hardened (CX) condition exhibits tensile strength in excess of 724 MPa (105 ksi) and hardness exceeding HRC 27 with excellent machinability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming. Filing Code: Cu-819. Producer or source: Materion Brush Performance Alloys.


Sign in / Sign up

Export Citation Format

Share Document