fiber tension
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 0)

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4287
Author(s):  
Elena Strungar ◽  
Dmitrii Lobanov ◽  
Valery Wildemann

This paper is devoted to the experimental study of polymeric composite specimens, with various types of reinforcement, in order to evaluate the breaking strength of specimens with open holes when undergoing uniaxial compression and tensile tests. Four types of interlaced 3D woven preforms were considered (orthogonal, orthogonal combined, with pairwise inter-layer reinforcement, and with pairwise inter-layer reinforcement and a longitudinal layer), with a layered preform used for comparison. Tensile tests of solid specimens without a hole, under ASTM D 3039, and of specimens with an open hole, under ASTM D 5766, were carried out using the Instron 5989 universal electromechanical testing system. Movements and strains on the specimen surface were recorded using a Vic-3D contactless optical video system and the digital images correlation method (DIC). For all the series of carbon fiber tension specimens, strain and stress diagrams, mechanical characteristics, and statistical processing for 10 specimens were obtained. The paper evaluated deformation fields for certain points in time; the obtained fields showed an irregular distribution of deformation and dependency on types of reinforcing fibers. A coefficient of strength variation is introduced, which is defined as a ratio of the ultimate stress limits obtained on solid samples with and without open holes. Within the framework of ASTM D 5766, when calculating the ultimate stress, the hole is not taken into account, and the paper shows that for certain structures a hole cannot be excluded. The hole size must not be neglected when calculating the ultimate stress.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1018
Author(s):  
Frederick H. Silver ◽  
Nikita Kelkar ◽  
Tanmay Deshmukh

Collagen and proteoglycans work in unison in the ECM to bear loads, store elastic energy and then dissipate excess energy to avoid tissue fatigue and premature mechanical failure. While collagen fibers store elastic energy by stretching the flexible regions in the triple helix, they do so by lowering their free energy through a reduction in the entropy and a decrease in charge–charge repulsion. Entropic increases occur when the load is released that drive the reversibility of the process and transmission of excess energy. Energy is dissipated by sliding of collagen fibrils by each other with the aid of decorin molecules that reside on the d and e bands of the native D repeat pattern. Fluid flow from the hydration layer associated with the decorin and collagen fibrils hydraulically dissipates energy during sliding. The deformation is reversed by osmotic forces that cause fluid to reform a hydration shell around the collagen fibrils when the loads are removed. In this paper a model is presented describing the organization of collagen fibers in the skin and cell–collagen mechanical relationships that exist based on non-invasive measurements made using vibrational optical coherence tomography. It is proposed that under external stress, collagen fibers form a tensional network in the plane of the skin. Collagen fiber tension along with forces generated by fibroblasts exerted on collagen fibers lead to an elastic modulus that is almost uniform throughout the plane of the skin. Tensile forces acting on cells and tissues may provide a baseline for stimulation of normal mechanotransduction. We hypothesize that during aging, changes in cellular metabolism, cell–collagen interactions and light and UV light exposure cause down regulation of mechanotransduction and tissue metabolism leading to tissue atrophy.


Science ◽  
2020 ◽  
Vol 370 (6514) ◽  
pp. 305.14-307
Author(s):  
Beverly A. Purnell
Keyword(s):  

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yi Liu ◽  
Qiang Fang ◽  
Yinglin Ke

The fiber tension should be kept constant during the automated placement of fiber prepreg. The velocity of the fiber placement end-effector moving on complex aircraft panel mould surface varies rapidly, which greatly disturbs the precision of tension control. This paper proposes a tension control strategy combining active control and passive control. The pay-off motor controls the fiber tension directly and a passive dancer roll is designed theoretically as the equipment for attenuation of tension disturbance to realize the real-time compensation of low-frequency velocity variations. The nonlinear model of tension control system, which includes the dynamics of the passive dancer roll, is established, and the effect of dancer roll parameters on its disturbances attenuation performance is analyzed. The controller is designed using the H∞ mixed sensitivity method. An experimental tension control precision about 2% is obtained at stable placement speed on the automated fiber placement (AFP) machine. The experiments also indicated that the tension would not vary over 1 N at a maximum acceleration of 4 m/s2.


2020 ◽  
Vol 107 ◽  
pp. 164-177
Author(s):  
Sean J. Cone ◽  
Andrew T. Fuquay ◽  
Justin M. Litofsky ◽  
Taylor C. Dement ◽  
Christopher A. Carolan ◽  
...  
Keyword(s):  

2019 ◽  
Vol 31 (6) ◽  
pp. 839-855
Author(s):  
Xuzhong Su ◽  
Xinjin Liu

Purpose The purpose of this paper is to theoretically study the effects of ring spinning triangle division on spun yarn torques. Design/methodology/approach The case that the spinning triangle is divided into two parts, primary triangles and final triangle, is investigated. Theoretical model of yarn torque was given by linking the fiber tension in the spinning triangle to yarn torque under the assumption that the arrangement of fibers (substrands) in the substrands (yarn) is hexagonal close packing. Then, as an application of the proposed method, 14.6tex cotton yarns were taken as an example for the numerical simulations. Findings The fiber tensions in the divided spinning triangles and corresponding yarn torques were simulated numerically by using MATLAB software. The effects of division proportions and number of primary triangles on spun yarn torques are analyzed theoretically. Originality/value It is shown that suitable spinning triangle division is benefit for reducing yarn torque.


2019 ◽  
Vol 50 (4) ◽  
pp. 460-482
Author(s):  
Xintong Hu ◽  
Lingling Yao ◽  
Yujing Zhang ◽  
Zhuo Meng ◽  
Yize Sun

Braiding carriers, which are the important parts of a braiding machine, have the functions such as carrying braiding materials, controlling tension of carbon fiber, and driving carbon fiber movement. During the braiding process, two groups of carbon fibers braided in clockwise and counter clockwise direction contact each other and form relative motion, which causes friction and fuzzing. In order to improve this situation, the structural parameters of the carriers need to be optimized. In this paper, the kinematics and dynamics models were established based on the structure of braiding carriers. The micro-element method was used to analyze the relationship between the fiber length released from the yarn barrel, the rotation angle of the lever, and the tension of the carbon fiber. To limit the fluctuant range of carbon fiber tension, and to alleviate the fluffing phenomenon caused by the two groups of carbon fiber in contact with each other, antlion algorithm was used to optimize the structural parameters of braiding carriers. The simulation results showed that the tension of the carbon fiber can meet the processing requirements by adjusting the starting angle of each stage of carrier, the length of lever, the elastic coefficient of springs, and pre-compression of springs. It can be known that the structural parameters of braiding carriers optimized by antlion algorithm could meet the requirement of carbon fiber tension.


2018 ◽  
Vol 204 ◽  
pp. 525-535 ◽  
Author(s):  
Lei Zu ◽  
Hui Xu ◽  
Bing Zhang ◽  
Debao Li ◽  
Huabi Wang ◽  
...  

2018 ◽  
Vol 89 (15) ◽  
pp. 3169-3177 ◽  
Author(s):  
Ruiqi Shao ◽  
Longdi Cheng ◽  
Yanping Yu ◽  
Jianxin Xu ◽  
Jianming Wu

The spinning triangle is a critical area in the ring-spinning process; the geometry of the spinning triangle influences the distribution of the fiber tension, and affects the qualities of the spun yarn. In this paper, a kind of dynamic twist-resistant device that can affect the geometry of the spinning triangle is employed for improving the conventional ring-spinning system.  The yarn twists between the front roller nip and dynamic twist-resistant device were captured in the spinning process using a high-speed camera. Comparing yarn twists of the two types of yarn, the modified yarns have a lower twist angle, indicating that the device can produce resistant torque. Particle Flow Code software was used to simulate the acts of the device on the yarn, and the results verified the existence of resistant torque. The resistant torque on the yarn affects the geometry of the spinning triangle and the distribution of fiber tension. In addition, 19.4 and 14.5 tex cotton yarns with three different twists, 700, 800 and 900 tpm, were produced by the modified and conventional ring spinning. The comparative study revealed that the modified yarns have a better performance in terms of yarn strength and hairiness, and show no significant difference in terms of the yarn evenness when compared with the conventional yarns at the same twist level. The mechanism of the effect of the dynamic twist-resistant device on yarn qualities is discussed by analyzing the distribution of fiber tension.


Sign in / Sign up

Export Citation Format

Share Document