Fast Automatic Vertebrae Detection and Localization in Pathological CT Scans - A Deep Learning Approach

Author(s):  
Amin Suzani ◽  
Alexander Seitel ◽  
Yuan Liu ◽  
Sidney Fels ◽  
Robert N. Rohling ◽  
...  
Author(s):  
Vlad Vasilescu ◽  
Ana Neacsu ◽  
Emilie Chouzenoux ◽  
Jean-Christophe Pesquet ◽  
Corneliu Burileanu

2021 ◽  
Author(s):  
Diogo F. Almeida ◽  
Patricio Astudillo ◽  
Dirk Vandermeulen

2019 ◽  
Vol 78 (24) ◽  
pp. 34563-34584 ◽  
Author(s):  
Mohd Asyraf Zulkifley ◽  
Siti Raihanah Abdani ◽  
Nuraisyah Hani Zulkifley

Author(s):  
B. Commandre ◽  
D. En-Nejjary ◽  
L. Pibre ◽  
M. Chaumont ◽  
C. Delenne ◽  
...  

Urban growth is an ongoing trend and one of its direct consequences is the development of buried utility networks. Locating these networks is becoming a challenging task. While the labeling of large objects in aerial images is extensively studied in Geosciences, the localization of small objects (smaller than a building) is in counter part less studied and very challenging due to the variance of object colors, cluttered neighborhood, non-uniform background, shadows and aspect ratios. In this paper, we put forward a method for the automatic detection and localization of manhole covers in Very High Resolution (VHR) aerial and remotely sensed images using a Convolutional Neural Network (CNN). Compared to other detection/localization methods for small objects, the proposed approach is more comprehensive as the entire image is processed without prior segmentation. The first experiments using the Prades-Le-Lez and Gigean datasets show that our method is indeed effective as more than 49% of the ground truth database is detected with a precision of 75 %. New improvement possibilities are being explored such as using information on the shape of the detected objects and increasing the types of objects to be detected, thus enabling the extraction of more object specific features.


Author(s):  
Alex Deakyne ◽  
Erik Gaasedelen ◽  
Paul A. Iaizzo

Recent advancements in deep learning have led to the possibility of increased performance in computer vision tools. A major development has been the usage of Convolutional Neural Networks (CNN) for automatically detecting features within a given image. Architectures such as YOLO1 have obtained incredibly high performances for the real-time detection of every-day objects within images. However to date, there have been few reports of deep learning applied to detect anatomical features within CT scans; especially those within the cardiovascular space. We propose here an automatic anatomical feature detection pipeline for identifying the features of the left atrium using a CNN. Slices of CT scans were fed into a single neural network which predicted the four bounding box coordinates that encapsulate the left atrium. The network can be optimized end-to-end and generate predictions at great speed, achieving a validation smooth L1 loss of 11.95 when predicting the left atrial bounding boxes.


2018 ◽  
Vol 6 (3) ◽  
pp. 122-126
Author(s):  
Mohammed Ibrahim Khan ◽  
◽  
Akansha Singh ◽  
Anand Handa ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document