Regulation of Stem Cell Self-Renewal and Oncogenesis by RNA-Binding Proteins

Author(s):  
Ayuna Hattori ◽  
Kristina Buac ◽  
Takahiro Ito
PLoS Genetics ◽  
2014 ◽  
Vol 10 (11) ◽  
pp. e1004797 ◽  
Author(s):  
Di Chen ◽  
Chan Wu ◽  
Shaowei Zhao ◽  
Qing Geng ◽  
Yu Gao ◽  
...  

2019 ◽  
Vol 97 (1) ◽  
pp. 10-20 ◽  
Author(s):  
Laura P.M.H. de Rooij ◽  
Derek C.H. Chan ◽  
Ava Keyvani Chahi ◽  
Kristin J. Hope

Normal hematopoiesis is sustained through a carefully orchestrated balance between hematopoietic stem cell (HSC) self-renewal and differentiation. The functional importance of this axis is underscored by the severity of disease phenotypes initiated by abnormal HSC function, including myelodysplastic syndromes and hematopoietic malignancies. Major advances in the understanding of transcriptional regulation of primitive hematopoietic cells have been achieved; however, the post-transcriptional regulatory layer that may impinge on their behavior remains underexplored by comparison. Key players at this level include RNA-binding proteins (RBPs), which execute precise and highly coordinated control of gene expression through modulation of RNA properties that include its splicing, polyadenylation, localization, degradation, or translation. With the recent identification of RBPs having essential roles in regulating proliferation and cell fate decisions in other systems, there has been an increasing appreciation of the importance of post-transcriptional control at the stem cell level. Here we discuss our current understanding of RBP-driven post-transcriptional regulation in HSCs, its implications for normal, perturbed, and malignant hematopoiesis, and the most recent technological innovations aimed at RBP–RNA network characterization at the systems level. Emerging evidence highlights RBP-driven control as an underappreciated feature of primitive hematopoiesis, the greater understanding of which has important clinical implications.


2018 ◽  
Author(s):  
Danielle S. Finger ◽  
Vivian V. Holt ◽  
Elizabeth T. Ables

ABSTRACTSteroid hormones promote stem cell self-renewal in many tissues; however, the molecular mechanisms by which hormone signaling is integrated with niche-derived signals are largely uncharacterized. In the Drosophila ovary, the steroid hormone ecdysone promotes germline stem cell (GSC) self-renewal. Despite strong evidence that ecdysone modulates the reception of bone morphogenetic protein (BMP) signals in GSCs, transcriptional targets of ecdysone signaling that facilitate BMP reception are unknown. Here, we report that ecdysone signaling promotes the expression of the heterogeneous nuclear ribonucleoproteins (hnRNPs) squid, hephaestus, Hrb27C, and Hrb87F in GSCs. These hnRNPs functionally interact with ecdysone signaling to control GSC number and are cell autonomously required in GSCs for their maintenance. We demonstrate that hnRNPs promote GSC self-renewal by binding to transcripts essential for proper BMP signaling, including the BMP receptors thickveins and punt. Our findings support the model that stem cells coordinate local and long-range signals at the transcriptional and post-transcriptional levels to maintain self-renewal in response to physiological demand.GRAPHICAL ABSTRACTEcdysone signaling regulates distinct hnRNPs that bind to BMP signaling targets to control GSC self-renewal.SUMMARY STATEMENTEcdysone signaling promotes expression of heterogeneous ribonucleoproteins that modulate BMP-dependent germline stem cell self-renewal in the Drosophila ovary.


2019 ◽  
Author(s):  
Kimberly A. Haupt ◽  
Kimberley T. Law ◽  
Amy L. Enright ◽  
Charlotte R. Kanzler ◽  
Heaji Shin ◽  
...  

ABSTRACTStem cell regulation relies on extrinsic signaling from a niche plus intrinsic factors that respond and drive self-renewal within stem cells. A priori, loss of niche signaling and loss of the intrinsic self-renewal factors might be expected to have equivalent stem cell defects. Yet this simple prediction has not been borne out for most stem cells, including C. elegans germline stem cells (GSCs). The central regulators of C. elegans GSCs include extrinsically-acting GLP-1/Notch signaling from the niche, intrinsically-acting RNA binding proteins in the PUF family, termed FBF-1 and FBF-2 (collectively FBF), and intrinsically-acting PUF partner proteins that are direct Notch targets. Abrogation of either GLP-1/Notch signaling or its targets yields an earlier and more severe GSC defect than loss of FBF-1 and FBF-2, suggesting that additional intrinsic regulators must exist. Here, we report that those missing regulators are two additional PUF proteins, PUF-3 and PUF-11. Remarkably, an fbf-1 fbf-2; puf-3 puf-11 quadruple null mutant has a GSC defect virtually identical to that of a glp-1/Notch null mutant. PUF-3 and PUF-11 both affect GSC maintenance; both are expressed in GSCs; and epistasis experiments place them at the same position as FBF within the network. Therefore, action of PUF-3 and PUF-11 explains the milder GSC defect in fbf-1 fbf-2 mutants. We conclude that a “PUF hub”, comprising four PUF proteins and two PUF partners, constitutes the intrinsic self-renewal node of the C. elegans GSC RNA regulatory network. Discovery of this hub underscores the significance of PUF RNA-binding proteins as key regulators of stem cell maintenance.


2021 ◽  
Author(s):  
Jonathan ENRIQUEZ ◽  
Wenyue GUAN ◽  
Mathilde BOUCHET ◽  
Aurelien DARMAS

Neuronal stem cells produce a finite and stereotyped number of neuronal progenies. This process must be finely regulated during development and adult stages to ensure proper brain function. In Drosophila, stem cells, called Neuroblasts, produce an invariant number of neurons. Two RNA binding proteins, Imp and Syp, play a central role in controlling the speed of division and the end of the proliferative phase of individual NBs, two parameters that influences the final number of neurons produced. Here, we have discovered a novel function for Imp and Syp, where both RBPs shape the number of neurons produced by a stem cell by controlling program cell death (PCD) in immature neurons. By studying a neuroblast lineage, called Lin A/15, which produces motoneurons (MNs) and glia, we have demonstrated that Lin A/15 stem cell spends 40% of its time producing immature MNs which are eliminated by apoptosis. We have revealed that only the first born MNs (Imp +) survive while the last born MNs (Imp- Syp+) are eliminated by apoptosis. Both RBPs play a central role in neuronal survival, Imp promotes neuronal survival while Syp promotes cell death in immature motoneurons. Interestingly their opposite temporal gradient in Lin A/15 stem cell also determines the end of Lin A/15 stem cell neurogenesis by PCD. Both RNA binding proteins are conserved in vertebrates and seem to play a central role in the number of neurons produce during development. The Drosophila model and its genetic tools offer a unique chance to decipher their function in neural stem cell versus immature neurons.


2018 ◽  
Author(s):  
Sara Genovese ◽  
Raphaël Clément ◽  
Cassandra Gaultier ◽  
Florence Besse ◽  
Karine Narbonne-Reveau ◽  
...  

AbstractThe mechanisms that govern the hierarchical organization of tumors are still poorly understood, especially in highly heterogeneous neural cancers. Previously, we had shown that aggressive neural tumors can be induced upon dedifferentiation of susceptible intermediate progenitors produced during early development (Narbonne-Reveau et al., 2016). Using clonal analysis, stochastic modelling and single-cell transcriptomics, we now find that such tumors rapidly become heterogeneous, containing progenitors with different proliferative potentials. We demonstrate that tumor heterogeneity emerges from the deregulated transition between two antagonistic RNA-binding proteins, Imp and Syncrip, that switch neural progenitors from a default self-renewing to a differentiation-prone state during development. Consequently, aberrant maintenance of Imp confers a cancer stem cell-like identity as Imp+ progenitors sustain tumor growth while being able to continuously generate Syncrip+ progenitors. The latter exhibit limited self-renewal likely due to Syncrip-mediated metabolic exhaustion. This study provides an example of how a subverted developmental transition establishes a hierarchical tumor.


2018 ◽  
Author(s):  
Douglas F. Porter ◽  
Aman Prasad ◽  
Brian H. Carrick ◽  
Peggy Kroll-Connor ◽  
Marvin Wickens ◽  
...  

AbstractMetazoan PUF (Pumilio and FBF) RNA-binding proteins regulate various biological processes, but a common theme across phylogeny is stem cell regulation. In Caenorhabditis elegans, FBF (fem-3 Binding Factor) maintains germline stem cells regardless of which gamete is made, but FBF also functions in the process of spermatogenesis. We have begun to “disentangle” these biological roles by asking which FBF targets are gamete-independent, as expected for stem cells, and which are gamete-specific. Specifically, we compared FBF iCLIP binding profiles in adults making sperm to those making oocytes. Normally, XX adults make oocytes. To generate XX adults making sperm, we used a fem-3(gf) mutant requiring growth at 25°; for comparison, wild-type oogenic hermaphrodites were also raised at 25°. Our FBF iCLIP data revealed FBF binding sites in 1522 RNAs from oogenic adults and 1704 RNAs from spermatogenic adults. More than half of these FBF targets were independent of germline gender. We next clustered RNAs by FBF-RNA complex frequencies and found four distinct blocks. Block I RNAs were enriched in spermatogenic germlines, and included validated target fog-3, while Block II and III RNAs were common to both genders, and Block IV RNAs were enriched in oogenic germlines. Block II (510 RNAs) included almost all validated FBF targets and was enriched for cell cycle regulators. Block III (21 RNAs) was enriched for RNA-binding proteins, including previously validated FBF targets gld-1 and htp-1. We suggest that Block I RNAs belong to the FBF network for spermatogenesis, and that Blocks II and III are associated with stem cell functions.


Sign in / Sign up

Export Citation Format

Share Document