cell cycle regulators
Recently Published Documents


TOTAL DOCUMENTS

851
(FIVE YEARS 207)

H-INDEX

73
(FIVE YEARS 8)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 234
Author(s):  
Veronika Kinterová ◽  
Jiří Kaňka ◽  
Alexandra Bartková ◽  
Tereza Toralová

SCF-dependent proteolysis was first discovered via genetic screening of budding yeast almost 25 years ago. In recent years, more and more functions of SCF (Skp1-Cullin 1-F-box) ligases have been described, and we can expect the number of studies on this topic to increase. SCF ligases, which are E3 ubiquitin multi-protein enzymes, catalyse protein ubiquitination and thus allow protein degradation mediated by the 26S proteasome. They play a crucial role in the degradation of cell cycle regulators, regulation of the DNA repair and centrosome cycle and play an important role in several diseases. SCF ligases seem to be needed during all phases of development, from oocyte formation through fertilization, activation of the embryonic genome to embryo implantation. In this review, we summarize known data on SCF ligase-mediated degradation during oogenesis and embryogenesis. In particular, SCFβTrCP and SCFSEL-10/FBXW7 are among the most important and best researched ligases during early development. SCFβTrCP is crucial for the oogenesis of Xenopus and mouse and also in Xenopus and Drosophila embryogenesis. SCFSEL-10/FBXW7 participates in the degradation of several RNA-binding proteins and thereby affects the regulation of gene expression during the meiosis of C. elegans. Nevertheless, a large number of SCF ligases that are primarily involved in embryogenesis remain to be elucidated.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 423
Author(s):  
Broto Chakrabarty ◽  
Nita Parekh

Ankyrin is one of the most abundant protein repeat families found across all forms of life. It is found in a variety of multi-domain and single domain proteins in humans with diverse number of repeating units. They are observed to occur in several functionally diverse proteins, such as transcriptional initiators, cell cycle regulators, cytoskeletal organizers, ion transporters, signal transducers, developmental regulators, and toxins, and, consequently, defects in ankyrin repeat proteins have been associated with a number of human diseases. In this study, we have classified the human ankyrin proteins into clusters based on the sequence similarity in their ankyrin repeat domains. We analyzed the amino acid compositional bias and consensus ankyrin motif sequence of the clusters to understand the diversity of the human ankyrin proteins. We carried out network-based structural analysis of human ankyrin proteins across different clusters and showed the association of conserved residues with topologically important residues identified by network centrality measures. The analysis of conserved and structurally important residues helps in understanding their role in structural stability and function of these proteins. In this paper, we also discuss the significance of these conserved residues in disease association across the human ankyrin protein clusters.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yujing Sun ◽  
Yuan Tian ◽  
Junyi He ◽  
Yaru Tian ◽  
Guohao Zhang ◽  
...  

AbstractThe long intergenic non-coding RNA linc01133 is reported to be oncogenic in various malignancies. However, the role and mechanism of linc01133 in regulating gastric cancer growth is still not clear. In the present study, we found that linc01133 was significantly upregulated in gastric cancer tissues compared to non-tumorous gastric tissues. Linc01133 over-expression significantly correlated with tumor size and tumor differentiation in gastric cancer patients. The expression of linc01133 was regulated by c-Jun and c-Fos collaboratively. In both in vitro and in vivo studies, linc01133 was shown to promote gastric cancer cell growth. Linc01133 localized in the cytoplasm and functioned as an endogenous competing RNA of miR-145-5p to upregulate the expression of YES1, which was proved to be the target gene of miR-145-5p. By promoting YES1-dependent YAP1 nuclear translocation, linc01133 upregulated the expression of the key cell cycle regulators CDK4, CDK6 and cyclin D1 to promote G1-S phase transition. Thus, our study unveiled the function and mechanism of linc01133 regulating cell cycle progression in gastric cancer.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 153
Author(s):  
Dorian V. Ziegler ◽  
Katharina Huber ◽  
Lluis Fajas

In the past decade, cell cycle regulators have extended their canonical role in cell cycle progression to the regulation of various cellular processes, including cellular metabolism. The regulation of metabolism is intimately connected with the function of autophagy, a catabolic process that promotes the efficient recycling of endogenous components from both extrinsic stress, e.g., nutrient deprivation, and intrinsic sub-lethal damage. Mediating cellular homeostasis and cytoprotection, autophagy is found to be dysregulated in numerous pathophysiological contexts, such as cancer. As an adaptative advantage, the upregulation of autophagy allows tumor cells to integrate stress signals, escaping multiple cell death mechanisms. Nevertheless, the precise role of autophagy during tumor development and progression remains highly context-dependent. Recently, multiple articles has suggested the importance of various cell cycle regulators in the modulation of autophagic processes. Here, we review the current clues indicating that cell-cycle regulators, including cyclin-dependent kinase inhibitors (CKIs), cyclin-dependent kinases (CDKs), and E2F transcription factors, are intrinsically linked to the regulation of autophagy. As an increasing number of studies highlight the importance of autophagy in cancer progression, we finally evoke new perspectives in therapeutic avenues that may include both cell cycle inhibitors and autophagy modulators to synergize antitumor efficacy.


2021 ◽  
Author(s):  
Kanaka Padam ◽  
Richard Morgan ◽  
Keith Hunter ◽  
Sanjiban Chakrabarty ◽  
Naveena Kumar ◽  
...  

Abstract Purpose: Evolutionarily conserved homeobox-containing HOX genes as transcriptional regulators in the developmental specification of organisms is well known. The contribution of HOX genes involvement in oral cancer phenotype has yet to be fully ascertained.Methods: GEO datasets (GSE72627, GSE30784, GSE37991) were accessed and analyzed using GEO2R. TCGA-HNSC HTSeq-counts and clinical data were retrieved from the GDC portal for oral cavity neoplasms. Differential HOX gene expression was profiled using the DESeq2 R package with a log2 fold change cut-off (-1 and +1) and Benjamini-Hochberg p-adjusted value at <0.01. Gene set over-representation analysis and semantic analysis associated with the disease ontology were performed using ClusterProfiler R package and pathway over-representation analysis was performed using IMPaLa. HOX protein interaction network was constructed using the Pathfind R package. HOX phenotype associations were performed using Mammalian Phenotype Ontology, Human Phenotype Ontology, PhenGenI associations, Jensen tissues, and OMIM entries. Drug connectivity mapping was carried out with Dr. Insight R Package.Results: HOXB2 and HOXA5 genes were upregulated in oral dysplasia but silenced during tumor progression. Loss of HOXB2 expression was consistent through potentially malignant dysplastic oral lesions (PMOL) to primary tumor formation. HOXA10, HOXB7, HOXC6, HOXC10 and HOXD10 showed consistent upregulation from premalignancy to malignancy and were notably associated with risk factors. Overrepresentation analysis suggested HOXA10 was involved in the transcriptional misregulation leading to oral cancer phenotype. HOX subnetwork analysis showed crucial interactions with cell cycle regulators, growth responsive elements, and proto-oncogenes.Conclusion: Phenotype associations specific to the oral region involving HOX genes provide intrinsic cues to tumor development. The 5’ HOX genes were aberrantly deregulated which reflects their posterior prevalence during oral carcinogenesis.


2021 ◽  
Author(s):  
Wan-Hsin Lin ◽  
Ryan W. Feathers ◽  
Lisa M. Cooper ◽  
Laura J. Lewis-Tuffin ◽  
Jann N. Sarkaria ◽  
...  

AbstractGlioblastomas (GBM) are aggressive tumors that lack effective treatments. Here, we show that the Rho family guanine nucleotide exchange factor Syx promotes GBM cell growth both in vitro and in orthotopic GBM patient-derived xenografts. Growth defects upon Syx depletion are attributed to prolonged mitosis, increased DNA damage, G2/M cell cycle arrest, and cell apoptosis, mediated by altered mRNA and protein expression of various cell cycle regulators. These effects are phenocopied by depletion of the Rho downstream effector Dia1 and are due at least in part to increased cytoplasmic retention and reduced activity of the YAP/TAZ transcriptional coactivators. Further, targeting Syx signaling cooperates with radiation treatment and temozolomide (TMZ) to decrease viability in GBM cells irrespective of their inherent response to TMZ. Taken together, the data indicate that a Syx-RhoA-Dia1-YAP/TAZ signaling axis regulates cell cycle progression, DNA damage, and therapy resistance in GBM and argue for its targeting for cancer treatment.One Sentence SummarySyx promotes growth and therapy resistance in glioblastoma.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yuehong Ma ◽  
Ling Fang ◽  
Rui Zhang ◽  
Peng Zhao ◽  
Yafeng Li ◽  
...  

Objectives. Most patients with systemic lupus erythematosus (SLE) develop lupus nephritis (LN) with severe kidney manifestations. Renal fibrosis can be primarily attributed to overproliferation of mesangial cells (MCs), which are subject to drug treatment. Nevertheless, the detailed mechanisms remain elusive. We sought to identify the effect of cyclophosphamide (CTX), a drug commonly used for LN treatment, on MC proliferation and explore its underlying mechanisms. Material/Methods. Cell proliferation and fibrosis in mouse kidney tissues were determined by histopathology staining techniques. Flow cytometry was used for cell cycle analysis. Cell cycle regulators were examined in vitro following treatment of immortalized human MCs with platelet-derived growth factor subunit B (PDGF-B). Quantitative real-time PCR and western blot analyses were used to measure the mRNA and protein levels of candidate cell cycle regulators, respectively. Results. CTX inhibited cell overproliferation induced by platelet-derived growth factor subunit B in vitro and in vivo. CTX (40 mg/l) was sufficient to induce G0/G1 phase cell cycle arrest. CTX treatment downregulated many critical cell cycle regulators including cyclins and cyclin-dependent kinases but upregulated cyclin-dependent kinase inhibitors. Additionally, CTX-treated samples showed significantly reduced fibrosis, as indicated by lower expression of interleukin-1β and α-smooth muscle actin. Conclusion. CTX inhibits proliferation of MCs by modulating cell cycle regulator and therefore arresting them at G1 phase. CTX treatment significantly alleviates the severity of renal fibrosis. These findings provide novel insights into the mechanisms by which CTX affects LN.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
María Victoria Castro ◽  
Gastón Alexis Barbero ◽  
María Belén Villanueva ◽  
Luca Grumolato ◽  
Jérémie Nsengimana ◽  
...  

Abstract Background Receptor tyrosine kinase-like orphan receptor 2 (ROR2) is a Wnt5a receptor aberrantly expressed in cancer that was shown to either suppress or promote carcinogenesis in different tumor types. Our goal was to study the role of ROR2 in melanoma. Methods Gain and loss-of-function strategies were applied to study the biological function of ROR2 in melanoma. Proliferation assays, flow cytometry, and western blotting were used to evaluate cell proliferation and changes in expression levels of cell-cycle and proliferation markers. The role of ROR2 in tumor growth was assessed in xenotransplantation experiments followed by immunohistochemistry analysis of the tumors. The role of ROR2 in melanoma patients was assessed by analysis of clinical data from the Leeds Melanoma Cohort. Results Unlike previous findings describing ROR2 as an oncogene in melanoma, we describe that ROR2 prevents tumor growth by inhibiting cell-cycle progression and the proliferation of melanoma cells. The effect of ROR2 is mediated by inhibition of Akt phosphorylation and activity which, in turn, regulates the expression, phosphorylation, and localization of major cell-cycle regulators including cyclins (A, B, D, and E), CDK1, CDK4, RB, p21, and p27. Xenotransplantation experiments demonstrated that ROR2 also reduces proliferation in vivo, resulting in inhibition of tumor growth. In agreement with these findings, a higher ROR2 level favors thin and non-ulcerated primary melanomas with reduced mitotic rate and better prognosis. Conclusion We conclude that the expression of ROR2 slows down the growth of primary tumors and contributes to prolonging melanoma survival. Our results demonstrate that ROR2 has a far more complex role than originally described.


2021 ◽  
Author(s):  
Neha Jaiswal ◽  
Deeptashree Nandi ◽  
Pradeep Singh Cheema ◽  
Alo Nag

The transforming properties of the high risk human papillomavirus E7 oncoprotein are indispensable for driving the virus life cycle and pathogenesis. Besides inactivation of retinoblastoma (Rb) family of tumor suppressors as part of its oncogenic endeavors, E7-mediated perturbations of eminent cell cycle regulators, checkpoint proteins and proto-oncogenes are considered to be the tricks of its transformative traits. However, many such critical interactions are still unknown. In the present study, we have identified the anaphase promoting complex/ cyclosome (APC/C) co-activator, Cdh1, as a novel interacting partner and a degradation target of E7. We found that HPV16 E7-induced inactivation of Cdh1 promoted abnormal accumulation of multiple Cdh1 substrates. Such a mode of deregulation possibly contributes to HPV-mediated cervical oncogenesis. Our mapping studies recognized the carboxyl-terminal zinc finger motif of E7 to associate with Cdh1 and interfere with the timely degradation of FoxM1, a bona fide Cdh1 substrate and a potent oncogene. Importantly, the E7 mutant with impaired interaction with Cdh1 exhibited defects in its ability for overriding typical cell cycle transition and oncogenic transformation, thereby validating the functional and pathological significance of the E7-Cdh1 axis during cervical carcinoma progression. Altogether, the findings from our study discover a unique nexus between E7 and APC/C-Cdh1, thereby adding to our understanding of the mechanism of E7-induced carcinogenesis and provide a promising target for the management of cervical carcinoma.


2021 ◽  
Author(s):  
Caroline Kampmeyer ◽  
Sven Larsen-Ledet ◽  
Morten Rose Wagnkilde ◽  
Mathias Michelsen ◽  
Henriette K. M. Iversen ◽  
...  

Degrons are short stretches of amino acids or structural motifs that are embedded in proteins. They mediate recognition by E3 ubiquitin-protein ligases and thus confer protein degradation via the ubiquitin-proteasome system. Well-described degrons include the N-degrons, destruction boxes, and the PIP degrons, which mediate the controlled degradation of various proteins including signaling components and cell cycle regulators. In comparison, the so-called protein quality control (PQC) degrons that mediate the degradation of structurally destabilized or misfolded proteins are not well described. Here, we show that disease-linked DHFR missense variants are structurally destabilized and chaperone-dependent proteasome targets. We systematically mapped regions within DHFR to assess those that act as cytosolic PQC degrons in yeast cells. Two regions, DHFR-Deg13-36 (here Deg1) and DHFR-Deg61-84 (here Deg2), act as degrons and conferred degradation to unrelated fusion partners. The proteasomal turnover of Deg2 was dependent on the molecular chaperone Hsp70. Structural analyses by NMR and hydrogen/deuterium exchange revealed that Deg2 is buried in wild-type DHFR, but becomes transiently exposed in the disease-linked missense variants.


Sign in / Sign up

Export Citation Format

Share Document