Future Exoplanet Research: High-Contrast Imaging Techniques

2017 ◽  
pp. 1-16
Author(s):  
Pierre Baudoz
2021 ◽  
Author(s):  
Mathis Houllé ◽  
Arthur Vigan ◽  
Alexis Carlotti ◽  
Élodie Choquet ◽  
Faustine Cantalloube ◽  
...  

<p>Combining high-contrast imaging with medium-resolution spectroscopy has recently been shown to significantly boost the direct detection of exoplanets. In this optic, HARMONI, one of the first-light instruments to be mounted on ESO's ELT, will be equipped with a single-conjugated adaptive optics system to reach the diffraction limit of the ELT in H and K bands, a high-contrast module dedicated to exoplanet imaging, and a medium-resolution (up to R = 17 000) optical and near-infrared integral field spectrograph. When combined, these systems will provide unprecedented contrast limits at separations between 50 and 400 mas. We will present in this talk the results of extensive simulations of exoplanet observations with the HARMONI high-contrast module. We used an end-to-end model of the instrument to simulate observations based on realistic observing scenarios and conditions. We then analyzed these observations with the so-called "molecule mapping" technique, which has shown in recent studies its efficiency to disentangle planetary companions from their host star and boost their signal. Although HARMONI has not been fully designed for high-contrast imaging, we will show that it should greatly outperform the current dedicated instruments, such as SPHERE on the VLT. We detect planets above 5σ in 2 hours at contrasts up to 16 mag and separations down to 75 mas in several spectral configurations of the instrument. Simulating planets from population synthesis models, we could image in this amount of time companions as close as 1 AU from a host star at 30 pc and as light as 2 M<sub>Jup</sub>. We show that taking advantage of the combination of high-contrast imaging and medium-resolution spectroscopy through molecule mapping allows us to access much fainter planets (up to 2.5 mag) than the standard high-contrast imaging techniques. We also demonstrate that HARMONI should be available for near-critical exoplanet observations with this method during 60 to 70% of telescope time at the ELT.</p>


2011 ◽  
Vol 7 (S282) ◽  
pp. 181-188
Author(s):  
Sasha Hinkley

AbstractThe current direct observations of brown dwarfs and exoplanets have been obtained using instruments not specifically designed for overcoming the large contrast ratio between the host star and any wide-separation faint companions. However, we are about to witness the birth of several new dedicated observing platforms specifically geared towards high contrast imaging of these objects. The Gemini Planet Imager, VLT-SPHERE, Subaru HiCIAO, and Project 1640 at the Palomar 5m telescope will return images of numerous exoplanets and brown dwarfs over hundreds of observing nights in the next five years. Along with diffraction-limited coronagraphs and high-order adaptive optics, these instruments also will return spectral and polarimetric information on any discovered targets, giving clues to their atmospheric compositions and characteristics. Such spectral characterization will be key to forming a detailed theory of comparative exoplanetary science which will be widely applicable to both exoplanets and brown dwarfs. Further, the prevalence of aperture masking interferometry in the field of high contrast imaging is also allowing observers to sense massive, young planets at solar system scales (~3–30 AU)— separations out of reach to conventional direct imaging techniques. Such observations can provide snapshots at the earliest phases of planet formation—information essential for constraining formation mechanisms as well as evolutionary models of planetary mass companions. As a demonstration of the power of this technique, I briefly review recent aperture masking observations of the HR 8799 system. Moreover, all of the aforementioned techniques are already extremely adept at detecting low-mass stellar companions to their target stars, and I present some recent highlights.


Author(s):  
Uwe Lücken ◽  
Michael Felsmann ◽  
Wim M. Busing ◽  
Frank de Jong

A new microscope for the study of life science specimen has been developed. Special attention has been given to the problems of unstained samples, cryo-specimens and x-ray analysis at low concentrations.A new objective lens with a Cs of 6.2 mm and a focal length of 5.9 mm for high-contrast imaging has been developed. The contrast of a TWIN lens (f = 2.8 mm, Cs = 2 mm) and the BioTWTN are compared at the level of mean and SD of slow scan CCD images. Figure 1a shows 500 +/- 150 and Fig. 1b only 500 +/- 40 counts/pixel. The contrast-forming mechanism for amplitude contrast is dependent on the wavelength, the objective aperture and the focal length. For similar image conditions (same voltage, same objective aperture) the BioTWIN shows more than double the contrast of the TWIN lens. For phasecontrast specimens (like thin frozen-hydrated films) the contrast at Scherzer focus is approximately proportional to the √ Cs.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Shangfeng Wang ◽  
Yong Fan ◽  
Dandan Li ◽  
Caixia Sun ◽  
Zuhai Lei ◽  
...  

2004 ◽  
Author(s):  
Alessandro Berton ◽  
Raffaele G. Gratton ◽  
Markus Feldt ◽  
Silvano Desidera ◽  
Elena Masciadri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document