Effect of Copper Additions on Secondary Carbide Precipitation in High Chromium with Cast Iron

Author(s):  
F. V. Guerra ◽  
A. Bedolla-Jacuinde ◽  
I. Mejı́a ◽  
J. Zuno-Silva ◽  
E. Cardoso-Legorreta
2018 ◽  
Vol 283 ◽  
pp. 116-123
Author(s):  
Sasitorn Yeekew ◽  
Amporn Wiengmoon ◽  
Torranin Chairuangsri ◽  
John T.H. Pearce

In this work, the effects of 1 wt.% tungsten addition and variation in tempering times on the microstructure and hardness of nominal 28 wt.%Cr high chromium irons were investigated. As-cast samples were destabilised at 1050 °C for 4 hours and then hardened by air cooling. Tempering after destabilisation was carried out at 450 °C for 2, 4 and 6 hours followed by air cooling. X-ray diffractometry, light microscopy and scanning electron microscopy were used to characterize the microstructures of the irons. The results show that the as-cast microstructure of the iron without W addition consisted of primary austenite dendrites with eutectic M7C3 and eutectic austenite partially transformed to martensite. The iron with 1 wt.%W addition contained primary M7C3 and eutectic M7C3 in an austenite matrix. Destabilisation treatment of the austenite matrix in both irons allowed precipitation of secondary carbides and transformation to martensite during air cooling. Phase transformation of eutectic M7C3 was also found in the iron with W addition. The formation of primary M7C3 in the 1 wt.%W iron increased the as-cast macro-hardness from 500 (no W) to 576 HV30. Destabilisation increased the macro-hardness up to 736 (no W) and 780 HV30 (1 wt.%W) since secondary carbide precipitation allowed austenite to transform to essentially martensitic matrices. At longer tempering times, the macro-hardness further increased up to about 820 HV30.


2018 ◽  
Vol 27 (8) ◽  
pp. 3877-3885 ◽  
Author(s):  
María Agustina Guitar ◽  
Sebastián Suárez ◽  
Orlando Prat ◽  
Martín Duarte Guigou ◽  
Valentina Gari ◽  
...  

Wear ◽  
1990 ◽  
Vol 135 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Tong Jian-Min ◽  
Zhou Yi-Zhong ◽  
Shen Tian-Yi ◽  
Deng Hai-Jin

2010 ◽  
Vol 150-151 ◽  
pp. 1054-1057
Author(s):  
Song Min Zhang ◽  
Liu Jie Xu

The components in slurry pump suffer serious corrosion and abrasion in the phosphorus fertilizer manufacturing process because they undergo corrosion of H3PO4 medium and impact of particles at the same time. Presently, High chromium cast irons are often used to produce the components in slurry pump. In order to reveal the corrosive law, the corrosion properties of high chromium cast iron with 26wt.%Cr content (Cr26) were tested under different H3PO4 medium concentration conditions. Using back-propagation (BP) neural network, the non-linear relationship between the corrosion weight losses (W) and H3PO4 concentration, corrosion time (C, t) is established on the base of the dealing with experimental data. The results show that the well-trained BP neural network can predict the wear weight loss precisely according to H3PO4 concentration and corrosion time. The prediction results reveal that corrosion weight loss rises linearly with increasing corrosion time. The H3PO4 concentration has obvious effect on corrosion property. When H3PO4 concentration is lower than about 0.5mol/L, high chromium cast iron has well resistance to H3PO4 corrosion. However, the corrosion resistance of high chromium cast iron rapidly decreases when the H3PO4 concentration exceed about 0.8 mol/L. It is suggest the high chromium cast iron be used under the condition of H3PO4 concentration of lower 0.8 mol/L.


Sign in / Sign up

Export Citation Format

Share Document