Vascular Networks Within 3D Printed and Engineered Tissues

Author(s):  
Daniel Sazer ◽  
Jordan Miller
2021 ◽  
Author(s):  
Ian S. Kinstlinger ◽  
Gisele A. Calderon ◽  
Madison K. Royse ◽  
A. Kristen Means ◽  
Bagrat Grigoryan ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1328 ◽  
Author(s):  
Cristina De Nardi ◽  
Diane Gardner ◽  
Anthony Duncan Jefferson

This paper presents a new form of biomimetic cementitious material, which employs 3D-printed tetrahedral mini-vascular networks (MVNs) to store and deliver healing agents to damage sites within cementitious matrices. The MVNs are required to not only protect the healing agent for a sufficient period of time but also survive the mixing process, release the healing agent when the cementitious matrix is damaged, and have minimal impact on the physical and mechanical properties of the host cementitious matrix. A systematic study is described which fulfilled these design requirements and determined the most appropriate form and material for the MVNs. A subsequent series of experiments showed that MVNs filled with sodium silicate, embedded in concrete specimens, are able to respond effectively to damage, behave as a perfusable vascular system and thus act as healing agent reservoirs that are available for multiple damage-healing events. It was also proved that healing agents encapsulated within these MVNs can be transported to cracked zones in concrete elements under capillary driving action, and produce a recovery of strength, stiffness and fracture energy.


2020 ◽  
Vol 4 (5) ◽  
pp. 572-572
Author(s):  
T. Mirabella ◽  
J. W. MacArthur ◽  
D. Cheng ◽  
C. K. Ozaki ◽  
Y. J. Woo ◽  
...  

Author(s):  
João Fradinho Oliveira ◽  
José Luis Moyano-Cuevas ◽  
J. Blas Pagador ◽  
Hugo Capote ◽  
Francisco Miguel Sánchez Margallo

Different imaging modalities (MRI/CT) are used to analyse/plan complex surgical procedures in order to minimize risks and complications. Although there are numerous computer tools for preoperative assistance (VR/AR simulators, 3D printed implants), intraoperative systems are less common, specifically for soft tissue related interventions. For this reason, this paper is focused on 3D reconstruction. The proposed reconstruction combines a surface approach for organs and a block approach for vascular networks. Layered closed surface(s) represent an organ and stacks of extruded individual contour blocks represent the vascular networks. The authors use IGSTK to show that their approach improves shape and transparency results when compared with other modelling methods and to communicate with trackers. With their method polygon contour correspondence/branching between slices is implicit/automatic, saving time; they show that traditional tiling problems become visually negligible. The authors' novel file format allows polygons segmented by other tools to be reconstructed in their contour annotation tool which uses VTK.


Lab on a Chip ◽  
2016 ◽  
Vol 16 (11) ◽  
pp. 2025-2043 ◽  
Author(s):  
Ian S. Kinstlinger ◽  
Jordan S. Miller

Fabrication of vascular networks within engineered tissue remains one of the greatest challenges facing the fields of biomaterials and tissue engineering.


Author(s):  
Isabel P. S. Qamar ◽  
Richard S. Trask

Self-healing materials have emerged as an alternative solution to the repair of damage in fibre-reinforced composites. Recent developments have largely focused on a vascular approach, due to the ability to transport healing agents over long distances and continually replenish from an external source. However fracture of the vascular network is required to enable the healing agents to infiltrate the crack plane, ceasing its primary function in transporting fluid and preventing the repair of any further damage events. Here we present a novel approach to vascular self-healing through the development and integration of 3D printed, porous, thermoplastic networks into a thermoset matrix. This concept exploits the inherently low surface chemistry of thermoplastic materials, which results in adhesive failure between the thermoplastic network and thermoset matrix on arrival of a propagating crack, thus exposing the radial pores of the network and allowing the healing agents to flow into the damage site. We investigate the potential of two additive manufacturing techniques, fused deposition modeling (FDM) and stereolithography, to fabricate free-standing, self-healing networks. Furthermore, we assess the interaction of a crack with branched network structures under static indentation in order to establish the feasibility of additive manufacture for multi-dimensional 3D printed self-healing networks.


2021 ◽  
Vol 13 (2) ◽  
pp. 938
Author(s):  
Karna Ramachandraiah

To mitigate the threat of climate change driven by livestock meat production, a multifaceted approach that incorporates dietary changes, innovative product development, advances in technologies, and reductions in food wastes/losses is proposed. The emerging technology of 3D printing (3DP) has been recognized for its unprecedented capacity to fabricate food products with intricate structures and reduced material cost and energy. For sustainable 3DP of meat substitutes, the possible materials discussed are derived from in vitro cell culture, meat byproducts/waste, insects, and plants. These material-based approaches are analyzed from their potential environmental effects, technological viability, and consumer acceptance standpoints. Although skeletal muscles and skin are bioprinted for medical applications, they could be utilized as meat without the additional printing of vascular networks. The impediments to bioprinting of meat are lack of food-safe substrates/materials, cost-effectiveness, and scalability. The sustainability of bioprinting could be enhanced by the utilization of generic/universal components or scaffolds and optimization of cell sourcing and fabrication logistics. Despite the availability of several plants and their byproducts and some start-up ventures attempting to fabricate food products, 3D printing of meat analogues remains a challenge. From various insects, powders, proteins (soluble/insoluble), lipids, and fibers are produced, which—in different combinations and at optimal concentrations—can potentially result in superior meat substitutes. Valuable materials derived from meat byproducts/wastes using low energy methods could reduce waste production and offset some greenhouse gas (GHG) emissions. Apart from printer innovations (speed, precision, and productivity), rational structure of supply chain and optimization of material flow and logistic costs can improve the sustainability of 3D printing. Irrespective of the materials used, perception-related challenges exist for 3D-printed food products. Consumer acceptance could be a significant challenge that could hinder the success of 3D-printed meat analogs.


Sign in / Sign up

Export Citation Format

Share Document