engineered tissues
Recently Published Documents


TOTAL DOCUMENTS

259
(FIVE YEARS 68)

H-INDEX

32
(FIVE YEARS 6)

Author(s):  
Xavier Barceló ◽  
Stefan Scheurer ◽  
Rajesh Lakshmanan ◽  
Cathal J Moran ◽  
Fiona Freeman ◽  
...  

3D bioprinting has the potential to transform the field of regenerative medicine as it enables the precise spatial patterning of biomaterials, cells and biomolecules to produce engineered tissues. Although numerous tissue engineering strategies have been developed for meniscal repair, the field has yet to realize an implant capable of completely regenerating the tissue. This paper first summarized existing meniscal repair strategies, highlighting the importance of engineering biomimetic implants for successful meniscal regeneration. Next, we reviewed how developments in 3D (bio)printing are accelerating the engineering of functional meniscal tissues and the development of implants targeting damaged or diseased menisci. Some of the opportunities and challenges associated with use of 3D bioprinting for meniscal tissue engineering are identified. Finally, we discussed key emerging research areas with the capacity to enhance the bioprinting of meniscal grafts.


Author(s):  
Cansu Karakaya ◽  
Jordy G. M. van Asten ◽  
Tommaso Ristori ◽  
Cecilia M. Sahlgren ◽  
Sandra Loerakker

AbstractCardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tissues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue G&R, and their behavior is strongly influenced by both mechanical stimuli and cell–cell signaling. An increasing number of signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulating the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell–cell signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell–cell signaling. In addition, we review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and cell–cell signaling to highlight their potential role in future CVTE strategies.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Matthew J. Powell-Palm ◽  
Verena Charwat ◽  
Berenice Charrez ◽  
Brian Siemons ◽  
Kevin E. Healy ◽  
...  

AbstractLow-temperature biopreservation and 3D tissue engineering present two differing routes towards eventual on-demand access to transplantable biologics, but recent advances in both fields present critical new opportunities for crossover between them. In this work, we demonstrate sub-zero centigrade preservation and revival of autonomously beating three-dimensional human induced pluripotent stem cell (hiPSC)-derived cardiac microtissues via isochoric supercooling, without the use of chemical cryoprotectants. We show that these tissues can cease autonomous beating during preservation and resume it after warming, that the supercooling process does not affect sarcomere structural integrity, and that the tissues maintain responsiveness to drug exposure following revival. Our work suggests both that functional three dimensional (3D) engineered tissues may provide an excellent high-content, low-risk testbed to study complex tissue biopreservation in a genetically human context, and that isochoric supercooling may provide a robust method for preserving and reviving engineered tissues themselves.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Prasanna Padmanaban ◽  
Ata Chizari ◽  
Tom Knop ◽  
Jiena Zhang ◽  
Vasileios D. Trikalitis ◽  
...  

AbstractFluid flow shear stresses are strong regulators for directing the organization of vascular networks. Knowledge of structural and flow dynamics information within complex vasculature is essential for tuning the vascular organization within engineered tissues, by manipulating flows. However, reported investigations of vascular organization and their associated flow dynamics within complex vasculature over time are limited, due to limitations in the available physiological pre-clinical models, and the optical inaccessibility and aseptic nature of these models. Here, we developed laser speckle contrast imaging (LSCI) and side-stream dark field microscopy (SDF) systems to map the vascular organization, spatio-temporal blood flow fluctuations as well as erythrocytes movements within individual blood vessels of developing chick embryo, cultured within an artificial eggshell system. By combining imaging data and computational simulations, we estimated fluid flow shear stresses within multiscale vasculature of varying complexity. Furthermore, we demonstrated the LSCI compatibility with bioengineered perfusable muscle tissue constructs, fabricated via molding techniques. The presented application of LSCI and SDF on perfusable tissues enables us to study the flow perfusion effects in a non-invasive fashion. The gained knowledge can help to use fluid perfusion in order to tune and control multiscale vascular organization within engineered tissues.


2021 ◽  
Author(s):  
Sergei Grebenyuk ◽  
Abdel Rahman Abdel Fattah ◽  
Gregorius Rustandi ◽  
Manoj Kumar ◽  
Burak Toprakhisar ◽  
...  

Abstract The vascularization of engineered tissues and organoids has remained a major unresolved challenge in regenerative medicine. While multiple approaches have been developed to vascularize in vitro tissues, it has thus far not been possible to generate sufficiently dense networks of small-scale vessels to perfuse large de novo tissues. Here, we achieve the perfusion of multi-mm3 tissue constructs by generating networks of synthetic capillary-scale 3D vessels. Our 3D soft microfluidic strategy is uniquely enabled by a 3D-printable 2-photon-polymerizable hydrogel formulation, which allows for precise microvessel printing at scales below the diffusion limit of living tissues. We demonstrate that these large-scale engineered tissues are viable, proliferative and exhibit complex morphogenesis during long-term in-vitro culture, while avoiding hypoxia and necrosis. We show by scRNAseq and immunohistochemistry that neural differentiation is significantly accelerated in perfused neural constructs. Additionally, we illustrate the versatility of this platform by demonstrating long-term perfusion of developing liver tissue. This fully synthetic vascularization platform opens the door to the generation of human tissue models at unprecedented scale and complexity.


2021 ◽  
Vol 22 (17) ◽  
pp. 9367
Author(s):  
Yeonggwon Jo ◽  
Seung Hyeon Hwang ◽  
Jinah Jang

Tissues and organs are not composed of solely cellular components; instead, they converge with an extracellular matrix (ECM). The composition and function of the ECM differ depending on tissue types. The ECM provides a microenvironment that is essential for cellular functionality and regulation. However, during aging, the ECM undergoes significant changes along with the cellular components. The ECM constituents are over- or down-expressed, degraded, and deformed in senescence cells. ECM aging contributes to tissue dysfunction and failure of stem cell maintenance. Aging is the primary risk factor for prevalent diseases, and ECM aging is directly or indirectly correlated to it. Hence, rejuvenation strategies are necessitated to treat various age-associated symptoms. Recent rejuvenation strategies focus on the ECM as the basic biomaterial for regenerative therapies, such as tissue engineering. Modified and decellularized ECMs can be used to substitute aged ECMs and cell niches for culturing engineered tissues. Various tissue engineering approaches, including three-dimensional bioprinting, enable cell delivery and the fabrication of transplantable engineered tissues by employing ECM-based biomaterials.


2021 ◽  
Author(s):  
Sergei Grebeniuk ◽  
Abdel Rahman Abdel Fattah ◽  
Gregorius Rustandi ◽  
Manoj Kumar ◽  
Burak Toprakhisar ◽  
...  

The vascularization of engineered tissues and organoids has remained a major unresolved challenge in regenerative medicine. While multiple approaches have been developed to vascularize in vitro tissues, it has thus far not been possible to generate sufficiently dense networks of small-scale vessels to perfuse large de novo tissues. Here, we achieve the perfusion of multi-mm3 tissue constructs by generating networks of synthetic capillary-scale 3D vessels. Our 3D soft microfluidic strategy is uniquely enabled by a 3D-printable 2-photon-polymerizable hydrogel formulation, which allows for precise microvessel printing at scales below the diffusion limit of living tissues. We demonstrate that these large-scale engineered tissues are viable, proliferative and exhibit complex morphogenesis during long-term in-vitro culture, while avoiding hypoxia and necrosis. We show by scRNAseq and immunohistochemistry that neural differentiation is significantly accelerated in perfused neural constructs. Additionally, we illustrate the versatility of this platform by demonstrating long-term perfusion of developing liver tissue. This fully synthetic vascularization platform opens the door to the generation of human tissue models at unprecedented scale and complexity.


Sign in / Sign up

Export Citation Format

Share Document