A Literature Review on Human Reliability Analysis Techniques Applied for Probabilistic Risk Assessment in the Nuclear Industry

Author(s):  
Ninochka Dsouza ◽  
Lixuan Lu
2009 ◽  
Author(s):  
Dennis C. Bley ◽  
Erasmia Lois ◽  
Alan M. Kolaczkowski ◽  
John Alan Forester ◽  
John Wreathall ◽  
...  

Author(s):  
Tatsuya Sakurahara ◽  
Zahra Mohaghegh ◽  
Ernie Kee

Abstract Fire is one of the most critical initiating events that can lead to core damage in nuclear power plants (NPPs). To evaluate the potential vulnerability of plants to fire hazards, fire probabilistic risk assessment (PRA) is commonly conducted. Manual fire protection features, performed by the first responders (e.g., fire brigade), play a key role in preventing and mitigating fire-induced damage to the plant systems. In the current fire PRA methodology of NPPs, there are two main gaps in the modeling of manual fire protection features: (i) the quantification of the first responder performance is solely based on empirical data (industry-wide historical fire events), and so the plant-specific design and conditions cannot be explicitly considered; and (ii) interactions of first responders with fire propagation are not fully captured. To address these challenges, the authors develop a model-based approach, grounded on human reliability analysis (HRA) and coupled with the fire dynamics simulator (FDS), to model the first responder performance more realistically and consider the interface between the first responder performance and fire propagation more explicitly. In this paper, the HRA-based approach is implemented in an integrated PRA (I-PRA) methodological framework for fire PRA and applied to a switchgear room fire scenario of an NPP. The proposed model-based approach (a) adds more realism to fire PRA and so to risk assessment in NPPs and (b) provides opportunities for sensitivity and importance measure analyses with respect to design conditions; therefore, contributes to risk management in NPPs.


Author(s):  
Yao Wang

According to existing research results, fire risk makes a significant contribution to the total risk of a nuclear power plant (NPP). So fire probabilistic safety analysis (PSA) for NPPs is becoming more and more important in recent years. How to perform human reliability analysis (HRA) which is an essential part of PSA is therefore being paid more and more attention in fire PSA. This paper describes the characteristics and special considerations of HRA in fire PSA, and demonstrates in fire PSA how to use SPAR-H method which is so-called an advanced second-generation HRA method and is being widely used in PSA for Chinese NPPs. The study results can be a reference for other HRA analysts to use SPAR-H method in fire PSA models or other PSA models in Chinese NPPs or the world-wide nuclear industry.


Author(s):  
Ronald L. Boring ◽  
Martin Rasmussen ◽  
Thomas A. Ulrich ◽  
Harold S. Blackman

Human reliability analysis (HRA) may be performed prospectively for a newly designed system or retrospectively for an as-built system, typically in response to a safety incident. The SPAR-H HRA method was originally developed for retrospective analysis in the U.S. nuclear industry. As HRA has found homes in new safety critical areas, HRA methods developed predominantly for nuclear power applications are being used in novel ways. The Petro-HRA method represents a significant adaptation of the SPAR-H method for petroleum applications. Current guidance on Petro-HRA considers only prospective applications of the method, such as for review of new systems to be installed at offshore installations. In this paper, we review retrospective applications of Petro-HRA and analyze the Macando Oil Well-Deepwater Horizon accident as a case study.


Sign in / Sign up

Export Citation Format

Share Document