Backscattering Spectrometry in the Helium Ion Microscope: Imaging Elemental Compositions on the nm Scale

Author(s):  
Rene Heller ◽  
Nico Klingner ◽  
Gregor Hlawacek
TAPPI Journal ◽  
2015 ◽  
Vol 14 (3) ◽  
pp. 167-174 ◽  
Author(s):  
QIANQIAN WANG ◽  
J.Y. ZHU

Mixed office paper (MOP) pulp without deinking with an ash content of 18.1 ± 1.5% was used as raw material to produce nanofiller-paper. The MOP pulp with filler was mechanically fibrillated using a laboratory stone grinder. Scanning electron microscope imaging revealed that the ground filler particles were wrapped by cellulose nanofibrils (CNFs), which substantially improved the incorporation of filler into the CNF matrix. Sheets made of this CNF matrix were densified due to improved bonding. Specific tensile strength and modulus of the nanofiller-paper with 60-min grinding reached 48.4 kN·m/kg and 8.1 MN·m/kg, respectively, approximately 250% and 200% of the respective values of the paper made of unground MOP pulp. Mechanical grinding duration did not affect the thermal stability of the nanofiller-paper.


2003 ◽  
Vol 777 ◽  
Author(s):  
T. Devolder ◽  
M. Belmeguenai ◽  
C. Chappert ◽  
H. Bernas ◽  
Y. Suzuki

AbstractGlobal Helium ion irradiation can tune the magnetic properties of thin films, notably their magneto-crystalline anisotropy. Helium ion irradiation through nanofabricated masks can been used to produce sub-micron planar magnetic nanostructures of various types. Among these, perpendicularly magnetized dots in a matrix of weaker magnetic anisotropy are of special interest because their quasi-static magnetization reversal is nucleation-free and proceeds by a very specific domain wall injection from the magnetically “soft” matrix, which acts as a domain wall reservoir for the “hard” dot. This guarantees a remarkably weak coercivity dispersion. This new type of irradiation-fabricated magnetic device can also be designed to achieve high magnetic switching speeds, typically below 100 ps at a moderate applied field cost. The speed is obtained through the use of a very high effective magnetic field, and high resulting precession frequencies. During magnetization reversal, the effective field incorporates a significant exchange field, storing energy in the form of a domain wall surrounding a high magnetic anisotropy nanostructure's region of interest. The exchange field accelerates the reversal and lowers the cost in reversal field. Promising applications to magnetic storage are anticipated.


2014 ◽  
pp. 32-35
Author(s):  
Teodor Paunescu ◽  
Sylvie Breton ◽  
Dennis Brown

2021 ◽  
Vol 31 (5) ◽  
pp. 1-4
Author(s):  
Jay C. LeFebvre ◽  
Shane A. Cybart

Sign in / Sign up

Export Citation Format

Share Document