PFC: An Efficient Soft Graph Clustering Method for PPI Networks Based on Purifying and Filtering the Coupling Matrix

Author(s):  
Ying Liu ◽  
Amir Foroushani
Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1271
Author(s):  
Hoyeon Jeong ◽  
Yoonbee Kim ◽  
Yi-Sue Jung ◽  
Dae Ryong Kang ◽  
Young-Rae Cho

Functional modules can be predicted using genome-wide protein–protein interactions (PPIs) from a systematic perspective. Various graph clustering algorithms have been applied to PPI networks for this task. In particular, the detection of overlapping clusters is necessary because a protein is involved in multiple functions under different conditions. graph entropy (GE) is a novel metric to assess the quality of clusters in a large, complex network. In this study, the unweighted and weighted GE algorithm is evaluated to prove the validity of predicting function modules. To measure clustering accuracy, the clustering results are compared to protein complexes and Gene Ontology (GO) annotations as references. We demonstrate that the GE algorithm is more accurate in overlapping clusters than the other competitive methods. Moreover, we confirm the biological feasibility of the proteins that occur most frequently in the set of identified clusters. Finally, novel proteins for the additional annotation of GO terms are revealed.


2017 ◽  
Vol 469 ◽  
pp. 551-562 ◽  
Author(s):  
HongFang Zhou ◽  
Jin Li ◽  
JunHuai Li ◽  
FaCun Zhang ◽  
YingAn Cui

Author(s):  
Wei Zhang ◽  
Yifu Zeng ◽  
Lei Wang ◽  
Yue Liu ◽  
Yi-nan Cheng

Author(s):  
David Combe ◽  
Christine Largeron ◽  
Mathias Géry ◽  
Előd Egyed-Zsigmond

Author(s):  
Kenji KOIZUMI ◽  
Shingo ADACHI ◽  
Shinsuke TAKAHASHI ◽  
Takeshi TAKEMOTO ◽  
Hideyuki TADOKORO

Sign in / Sign up

Export Citation Format

Share Document