Studies of Energetic Ions in the Inner Heliosphere

Author(s):  
George M. Simnett
1987 ◽  
Vol 92 (A1) ◽  
pp. 291 ◽  
Author(s):  
W. T. Kasprzak ◽  
H. B. Niemann ◽  
P. Mahaffy
Keyword(s):  

2014 ◽  
Vol 32 ◽  
pp. 1460342
Author(s):  
Si Ci Ong ◽  
Usman Ilyas ◽  
Rajdeep Singh Rawat

Zinc oxide, ZnO , a popular semiconductor material with a wide band gap (3.37 eV) and high binding energy of the exciton (60 meV), has numerous applications such as in optoelectronics, chemical/biological sensors, and drug delivery. This project aims to (i) optimize the operating conditions for growth of ZnO nanostructures using the chemical vapor deposition (CVD) method, and (ii) investigate the effects of coupling radiofrequency (RF) plasma to the CVD method on the quality of ZnO nanostructures. First, ZnO nanowires were synthesized using a home-made reaction setup on gold-coated and non-coated Si (100) substrates at 950 °C. XRD, SEM, EDX, and PL measurements were used for characterizations and it was found that a deposition duration of 10 minutes produced the most well-defined ZnO nanowires. SEM analysis revealed that the nanowires had diameters ranging from 30-100 mm and lengths ranging from 1-4 µm. In addition, PL analysis showed strong UV emission at 380 nm, making it suitable for UV lasing. Next, RF plasma was introduced for 30 minutes. Both remote and in situ RF plasma produced less satisfactory ZnO nanostructures with poorer crystalline structure, surface morphology, and optical properties due to etching effect of energetic ions produced from plasma. However, a reduction in plasma discharge duration to 10 minutes produced thicker and shorter ZnO nanostructures. Based on experimentation conducted, it is insufficient to conclude that RF plasma cannot aid in producing well-defined ZnO nanostructures. It can be deduced that the etching effect of energetic ions outweighed the increased oxygen radical production in RF plasma nanofabrication.


2021 ◽  
Vol 28 (1) ◽  
pp. 012104
Author(s):  
Baofeng Gao ◽  
Huishan Cai ◽  
Feng Wang ◽  
Xiang Gao ◽  
Yuanxi Wan

2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Valeria Mangano ◽  
Melinda Dósa ◽  
Markus Fränz ◽  
Anna Milillo ◽  
Joana S. Oliveira ◽  
...  

AbstractThe dual spacecraft mission BepiColombo is the first joint mission between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA) to explore the planet Mercury. BepiColombo was launched from Kourou (French Guiana) on October 20th, 2018, in its packed configuration including two spacecraft, a transfer module, and a sunshield. BepiColombo cruise trajectory is a long journey into the inner heliosphere, and it includes one flyby of the Earth (in April 2020), two of Venus (in October 2020 and August 2021), and six of Mercury (starting from 2021), before orbit insertion in December 2025. A big part of the mission instruments will be fully operational during the mission cruise phase, allowing unprecedented investigation of the different environments that will encounter during the 7-years long cruise. The present paper reviews all the planetary flybys and some interesting cruise configurations. Additional scientific research that will emerge in the coming years is also discussed, including the instruments that can contribute.


1999 ◽  
Vol 39 (12) ◽  
pp. 2471-2495 ◽  
Author(s):  
ITER Physics Expert Group on Energe Drive ◽  
ITER Physics Basis Editors
Keyword(s):  

1979 ◽  
Vol 47 (1) ◽  
pp. 234-239 ◽  
Author(s):  
Naoto Kobayashi ◽  
Takatoshi Irie ◽  
Nobuhiro Maeda ◽  
Hiroshi Kojima ◽  
Shin-ichi Akanuma ◽  
...  

1998 ◽  
Vol 25 (15) ◽  
pp. 2959-2962 ◽  
Author(s):  
T. Mulligan ◽  
C. T. Russell ◽  
J. G. Luhmann

Author(s):  
Iannis Dandouras ◽  
Philippe Garnier ◽  
Donald G Mitchell ◽  
Edmond C Roelof ◽  
Pontus C Brandt ◽  
...  

Titan's nitrogen-rich atmosphere is directly bombarded by energetic ions, due to its lack of a significant intrinsic magnetic field. Singly charged energetic ions from Saturn's magnetosphere undergo charge-exchange collisions with neutral atoms in Titan's upper atmosphere, or exosphere, being transformed into energetic neutral atoms (ENAs). The ion and neutral camera, one of the three sensors that comprise the magnetosphere imaging instrument (MIMI) on the Cassini/Huygens mission to Saturn and Titan, images these ENAs like photons, and measures their fluxes and energies. These remote-sensing measurements, combined with the in situ measurements performed in the upper thermosphere and in the exosphere by the ion and neutral mass spectrometer instrument, provide a powerful diagnostic of Titan's exosphere and its interaction with the Kronian magnetosphere. These observations are analysed and some of the exospheric features they reveal are modelled.


Sign in / Sign up

Export Citation Format

Share Document