A Multi-objective Evolutionary Approach to Pareto Optimal Model Trees. A Preliminary Study

Author(s):  
Marcin Czajkowski ◽  
Marek Kretowski
2018 ◽  
Vol 23 (5) ◽  
pp. 1423-1437 ◽  
Author(s):  
Marcin Czajkowski ◽  
Marek Kretowski

Author(s):  
Yiguang Gong ◽  
Yunping Liu ◽  
Chuanyang Yin

AbstractEdge computing extends traditional cloud services to the edge of the network, closer to users, and is suitable for network services with low latency requirements. With the rise of edge computing, its security issues have also received increasing attention. In this paper, a novel two-phase cycle algorithm is proposed for effective cyber intrusion detection in edge computing based on a multi-objective genetic algorithm (MOGA) and modified back-propagation neural network (MBPNN), namely TPC-MOGA-MBPNN. In the first phase, the MOGA is employed to build a multi-objective optimization model that tries to find the Pareto optimal parameter set for MBPNN. The Pareto optimal parameter set is applied for simultaneous minimization of the average false positive rate (Avg FPR), mean squared error (MSE) and negative average true positive rate (Avg TPR) in the dataset. In the second phase, some MBPNNs are created based on the parameter set obtained by MOGA and are trained to search for a more optimal parameter set locally. The parameter set obtained in the second phase is used as the input of the first phase, and the training process is repeated until the termination criteria are reached. A benchmark dataset, KDD cup 1999, is used to demonstrate and validate the performance of the proposed approach for intrusion detection. The proposed approach can discover a pool of MBPNN-based solutions. Combining these MBPNN solutions can significantly improve detection performance, and a GA is used to find the optimal MBPNN combination. The results show that the proposed approach achieves an accuracy of 98.81% and a detection rate of 98.23% and outperform most systems of previous works found in the literature. In addition, the proposed approach is a generalized classification approach that is applicable to the problem of any field having multiple conflicting objectives.


Author(s):  
H Sayyaadi ◽  
H R Aminian

A regenerative gas turbine cycle with two particular tubular recuperative heat exchangers in parallel is considered for multi-objective optimization. It is assumed that tubular recuperative heat exchangers and its corresponding gas cycle are in design stage simultaneously. Three objective functions including the purchased equipment cost of recuperators, the unit cost rate of the generated power, and the exergetic efficiency of the gas cycle are considered simultaneously. Geometric specifications of the recuperator including tube length, tube outside/inside diameters, tube pitch, inside shell diameter, outer and inner tube limits of the tube bundle and the total number of disc and doughnut baffles, and main operating parameters of the gas cycle including the compressor pressure ratio, exhaust temperature of the combustion chamber and the air mass flowrate are considered as decision variables. Combination of these objectives anddecision variables with suitable engineering and physical constraints (including NO x and CO emission limitations) comprises a set of mixed integer non-linear problems. Optimization programming in MATLAB is performed using one of the most powerful and robust multi-objective optimization algorithms, namely non-dominated sorting genetic algorithm. This approach is applied to find a set of Pareto optimal solutions. Pareto optimal frontier is obtained, and a final optimal solution is selected in a decision-making process.


Sign in / Sign up

Export Citation Format

Share Document