Three Dimensional Dendritic Growth from an Undercooled Binary Mixture

Author(s):  
Jian-Jun Xu
2004 ◽  
Vol 69 (3) ◽  
Author(s):  
H. M. Singer ◽  
J. H. Bilgram

2013 ◽  
Vol 668 ◽  
pp. 870-874
Author(s):  
Heng Min Ding ◽  
Tie Qiao Zhang ◽  
Lv Chun Pu

In the paper, a model basing on solute conservative in every unit is developed for solving the solute diffusion equation during solidification. The model includes time-dependent calculations for temperature distribution, solute redistribution in the liquid and solid phases. Three-dimensional computations are performed for Al-Cu dendritic growth into an adiabatic and highly supersaturated liquid phase. A numerical algorithm was developed to explicitly track the sharp solid/liquid (S/L) interface on a fixed Cartesian grid. Three-dimensional mesoscopic calculations were performed to simulate the evolution of equiaxed dendritic morphologies.


2010 ◽  
Vol 97-101 ◽  
pp. 3769-3772 ◽  
Author(s):  
Chang Sheng Zhu ◽  
Jun Wei Wang

Based on a thin interface limit 3D phase-field model by coupled the anisotropy of interfacial energy and self-designed AADCR to improve on the computational methods for solving phase-field, 3D dendritic growth in pure undercooled melt is implemented successfully. The simulation authentically recreated the 3D dendritic morphological fromation, and receives the dendritic growth rule being consistent with crystallization mechanism. An example indicates that AADCR can decreased 70% computational time compared with not using algorithms for a 3D domain of size 300×300×300 grids, at the same time, the accelerated algorithms’ computed precision is higher and the redundancy is small, therefore, the accelerated method is really an effective method.


1961 ◽  
Vol 9 (4) ◽  
pp. 761-771 ◽  
Author(s):  
Norimitsu Watabe ◽  
Karl M. Wilbur

Details of crystal growth in the calcitostracum of Crassostrea virginica have been studied with the purpose of analyzing the formation of the overlapping rows of oriented tabular crystals characteristic of this part of the shell. Crystal elongation, orientation, and dendritic growth suggest the presence of strong concentration gradients in a thin layer of solution in which crystallization occurs. Formation of the overlapping rows can be explained by three processes observed in the shell: a two-dimensional tree-like dendritic growth in which one set of crystal branchings creeps over an adjacent set of branchings; three-dimensional dendritic growth; and growth by dislocation of crystal surfaces. Multilayers of crystals may thus be formed at one time. This is favored by infrequent secretion of a covering organic matrix which would inhibit crystal growth. The transitional zone covering the outer part of the calcitostracum and the inner part of the prismatic region is generally characterized by aggregates of small crystals with definite orientation. Growth in this zone appears to take place in a relatively homogeneous state of solution without strong concentration gradients. Thin membranes and bands of organic matrix were commonly observed in the transitional zone bordering the prismatic region. The membrane showed a very fine oriented network pattern.


2012 ◽  
Vol 60 (5) ◽  
pp. 2249-2257 ◽  
Author(s):  
Xianfei Zhang ◽  
Jiuzhou Zhao ◽  
Hongxiang Jiang ◽  
Mingfang Zhu

2015 ◽  
Vol 12 (11) ◽  
pp. 4289-4296 ◽  
Author(s):  
Li Feng ◽  
Jinfang Jia ◽  
Changsheng Zhu ◽  
Yang Lu ◽  
Rongzhen Xiao ◽  
...  

1996 ◽  
Vol 77 (19) ◽  
pp. 4050-4053 ◽  
Author(s):  
Alain Karma ◽  
Wouter-Jan Rappel

2015 ◽  
Vol 767 ◽  
pp. 290-322 ◽  
Author(s):  
V. Shevtsova ◽  
Y. A. Gaponenko ◽  
V. Sechenyh ◽  
D. E. Melnikov ◽  
T. Lyubimova ◽  
...  

AbstractWe examine the dynamics of a binary mixture in a cubic cell subjected to a temperature differential and oscillatory forcing. The Soret effect, which is negative in the present study, provides a coupling mechanism by which a temperature gradient establishes a concentration gradient in a mixture. We present the results of experiments that were performed on the International Space Station (ISS) and compare the observations with the results of direct numerical simulations. The evolution of temperature and concentration fields is investigated by optical digital interferometry. One advantage of the experimental technique is the observation of the fields along two perpendicular directions of the cell, allowing us to restore the three-dimensional field. Experimental evidence disproves speculations that the ISS microgravity environment always affects diffusion-controlled processes. Furthermore, we demonstrate that imposed vibrations with constant frequency and amplitude create slow mean flows and that they do influence the diffusion kinetics. The perturbation of the diffusive fields scales as the square of the vibrational velocity. In addition to calculations of the full three-dimensional Navier–Stokes equations, a two-time-scale computational methodology is used for situations in which the forcing period is very small compared to the natural time scales of the problem. The simulations show excellent agreement with experimental observations.


2013 ◽  
Vol 14 (2) ◽  
pp. 477-568 ◽  
Author(s):  
A. Rasheed ◽  
A. Belmiloudi

AbstractIn this paper, we present a new model developed in order to analyze phenomena which arise in the solidification of binary mixtures using phase-field method, which incorporates the convection effects and the action of magnetic field. The model consists of flow, concentration, phase field and energy systems which are nonlinear evolutive and coupled systems. It represents the non-isothermal anisotropic solidification process of a binary mixture together with the motion in a melt with the applied magnetic field. To illustrate our model, numerical simulations of the influence of magnetic-field on the evolution of dendrites during the solidification of the binary mixture of Nickel-Copper (Ni-Cu) are developed. The results demonstrate that the dendritic growth under the action of magnetic-field can be simulated by using our model.


Sign in / Sign up

Export Citation Format

Share Document