Robust Stability of a Class of an Uncertain Fractional Discrete-Time Linear State-Space System

Author(s):  
Andrzej Ruszewski
2003 ◽  
Vol 05 (04) ◽  
pp. 361-374
Author(s):  
HUA XU ◽  
HIROAKI MUKAIDANI

The linear quadratic zero-sum dynamic game for discrete time descriptor systems is considered. A method, which involves solving a linear quadratic zero-sum dynamic game for a reduced-order discrete time state space system, is developed to find the linear feedback saddle-point solutions of the problem. Checkable conditions, which are described in terms of two dual algebraic Riccati equations and a Hamiltonian matrix, are given such that the linear quadratic zero-sum dynamic game for the reduced-order discrete time state space system is available. Sufficient conditions for the existence of the solutions are obtained. In contrast with the dynamic game in state space systems, the dynamic game in descriptor systems admits uncountably many linear feedback saddle-point solutions. All these solutions have the same existence conditions and achieve the same value of the dynamic game.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Janusz Piotr Paplinski

The main problem with the soft-computing algorithms is a determination of their parameters. The tuning rules are very general and need experiments during a trial and error method. The equations describing the bat algorithm have the form of difference equations, and the algorithm can be treated as a stochastic discrete-time system. The behaviour of this system depends on its dynamic and preservation stability conditions. The paper presents the stability analysis of the bat algorithm described as a stochastic discrete-time state-space system. The observability and controllability analyses were made in order to verify the correctness of the model describing the dynamic of BA. Sufficient conditions for stability are derived based on the Lyapunov stability theory. They indicate the recommended areas of the location of the parameters. The analysis of the position of eigenvalues of the state matrix shows how the different values of parameters affect the behaviour of the algorithm. They indicate the recommended area of the location of the parameters. Simulation results confirm the theory-based analysis.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2307
Author(s):  
Sofiane Bououden ◽  
Ilyes Boulkaibet ◽  
Mohammed Chadli ◽  
Abdelaziz Abboudi

In this paper, a robust fault-tolerant model predictive control (RFTPC) approach is proposed for discrete-time linear systems subject to sensor and actuator faults, disturbances, and input constraints. In this approach, a virtual observer is first considered to improve the observation accuracy as well as reduce fault effects on the system. Then, a real observer is established based on the proposed virtual observer, since the performance of virtual observers is limited due to the presence of unmeasurable information in the system. Based on the estimated information obtained by the observers, a robust fault-tolerant model predictive control is synthesized and used to control discrete-time systems subject to sensor and actuator faults, disturbances, and input constraints. Additionally, an optimized cost function is employed in the RFTPC design to guarantee robust stability as well as the rejection of bounded disturbances for the discrete-time system with sensor and actuator faults. Furthermore, a linear matrix inequality (LMI) approach is used to propose sufficient stability conditions that ensure and guarantee the robust stability of the whole closed-loop system composed of the states and the estimation error of the system dynamics. As a result, the entire control problem is formulated as an LMI problem, and the gains of both observer and robust fault-tolerant model predictive controller are obtained by solving the linear matrix inequalities (LMIs). Finally, the efficiency of the proposed RFTPC controller is tested by simulating a numerical example where the simulation results demonstrate the applicability of the proposed method in dealing with linear systems subject to faults in both actuators and sensors.


1990 ◽  
Vol 112 (4) ◽  
pp. 774-781 ◽  
Author(s):  
R. J. Chang

A practical technique to derive a discrete-time linear state estimator for estimating the states of a nonlinearizable stochastic system involving both state-dependent and external noises through a linear noisy measurement system is presented. The present technique for synthesizing a discrete-time linear state estimator is first to construct an equivalent reference linear model for the nonlinearizable system such that the equivalent model will provide the same stationary covariance response as that of the nonlinear system. From the linear continuous model, a discrete-time state estimator can be directly derived from the corresponding discrete-time model. The synthesizing technique and filtering performance are illustrated and simulated by selecting linear, linearizable, and nonlinearizable systems with state-dependent noise.


Sign in / Sign up

Export Citation Format

Share Document